, Volume 28, Issue 3, pp 567–576 | Cite as

Iron loading site on the Fe–S cluster assembly scaffold protein is distinct from the active site

  • Andria V. Rodrigues
  • Ashoka Kandegedara
  • John A. Rotondo
  • Andrew Dancis
  • Timothy L. StemmlerEmail author


Iron–sulfur (Fe–S) cluster containing proteins are utilized in almost every biochemical pathway. The unique redox and coordination chemistry associated with the cofactor allows these proteins to participate in a diverse set of reactions, including electron transfer, enzyme catalysis, DNA synthesis and signaling within several pathways. Due to the high reactivity of the metal, it is not surprising that biological Fe–S cluster assembly is tightly regulated within cells. In yeast, the major assembly pathway for Fe–S clusters is the mitochondrial ISC pathway. Yeast Fe–S cluster assembly is accomplished using the scaffold protein (Isu1) as the molecular foundation, with assistance from the cysteine desulfurase (Nfs1) to provide sulfur, the accessory protein (Isd11) to regulate Nfs1 activity, the yeast frataxin homologue (Yfh1) to regulate Nfs1 activity and participate in Isu1 Fe loading possibly as a chaperone, and the ferredoxin (Yah1) to provide reducing equivalents for assembly. In this report, we utilize calorimetric and spectroscopic methods to provide molecular insight into how wt-Isu1 from S. cerevisiae becomes loaded with iron. Isothermal titration calorimetry and an iron competition binding assay were developed to characterize the energetics of protein Fe(II) binding. Differential scanning calorimetry was used to identify thermodynamic characteristics of the protein in the apo state or under iron loaded conditions. Finally, X-ray absorption spectroscopy was used to characterize the electronic and structural properties of Fe(II) bound to Isu1. Current data are compared to our previous characterization of the D37A Isu1 mutant, and these suggest that when Isu1 binds Fe(II) in a manner not perturbed by the D37A substitution, and that metal binding occurs at a site distinct from the cysteine rich active site in the protein.


Iron Fe–S cluster biosynthesis ISU scaffold protein Iron binding 



This work was supported by funds for A.V.R. from the American Heart Association and the Friedreich’s Ataxia Research Alliance (12PRE11720005), and funds from the National Institutes of Health for A.D. (DK53953) and T.L.S. (DK068139). Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL). SSRL is a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the NIH, National Center for Research Resources, Biomedical Technology Program.

Conflict of interest

The authors declare no conflict of interest.


  1. Bencze KZ, Kondapalli KC, Cook JD, McMahon S, Millan-Pacheco C, Pastor N, Stemmler TL (2006) The structure and function of frataxin. Crit Rev Biochem Mol Biol 41(5):269–291. doi: 10.1080/10409230600846058 CrossRefPubMedCentralPubMedGoogle Scholar
  2. Bencze KZ, Kondapalli KC, Stemmler TL (2007) X-ray absorption spectroscopy. In: Scott RA, Lukehart CM (eds) Applications of physical methods in inorganic and bioinorganic chemistry: handbook, encyclopedia of inorganic chemistry, 2nd edn. Wiley, Chichester, pp 513–528Google Scholar
  3. Bertini I, Cowan JA, Del Bianco C, Luchinat C, Mansy SS (2003) Thermotoga maritima IscU. Structural characterization and dynamics of a new class of metallochaperone. J Mol Biol 331(4):907–924. doi: 10.1016/S0022-2836(03)00768-X CrossRefPubMedGoogle Scholar
  4. Bridwell-Rabb J, Fox NG, Tsai CL, Winn AM, Barondeau DP (2014) Human frataxin activates Fe-S cluster biosynthesis by facilitating sulfur transfer chemistry. Biochemistry 53(30):4904–4913. doi: 10.1021/bi500532e CrossRefPubMedGoogle Scholar
  5. Cook JD, Bencze KZ, Jankovic AD, Crater AK, Busch CN, Bradley PB, Stemmler AJ, Spaller MR, Stemmler TL (2006) Monomeric yeast frataxin is an iron-binding protein. Biochemistry 45(25):7767–7777. doi: 10.1021/bi060424r CrossRefPubMedCentralPubMedGoogle Scholar
  6. Cook JD, Kondapalli KC, Rawat S, Childs WC, Murugesan Y, Dancis A, Stemmler TL (2010) Molecular details of the yeast frataxin-Isu1 interaction during mitochondrial Fe-S cluster assembly. Biochemistry 49(40):8756–8765. doi: 10.1021/bi1008613 CrossRefPubMedCentralPubMedGoogle Scholar
  7. Craig EA, Voisine C, Schilke B (1999) Mitochondrial iron metabolism in the yeast Saccharomyces cerevisiae. Biol Chem 380(10):1167–1173. doi: 10.1515/BC.1999.148 CrossRefPubMedGoogle Scholar
  8. Foster MW, Mansy SS, Hwang J, Penner-Hahn JE, Surerus KK, Cowan JA (2000) A mutant human IscU protein contains a stable [2Fe-2S]2+ center of possible functional significance. J Am Chem Soc 122:6805–6806. doi: 10.1021/ja000800+ CrossRefGoogle Scholar
  9. Garland SA, Hoff K, Vickery LE, Culotta VC (1999) Saccharomyces cerevisiae ISU1 and ISU2: members of a well-conserved gene family for iron-sulfur cluster assembly. J Mol Biol 294(4):897–907. doi: 10.1006/jmbi.1999.3294 CrossRefPubMedGoogle Scholar
  10. Grzesiak A, Helland R, Smalas AO, Krowarsch D, Dadlez M, Otlewski J (2000) Substitutions at the P(1) position in BPTI strongly affect the association energy with serine proteinases. J Mol Biol 301(1):205–217. doi: 10.1006/jmbi.2000.3935 CrossRefPubMedGoogle Scholar
  11. Holmes-Hampton GP, Miao R, Garber Morales J, Guo Y, Munck E, Lindahl PA (2010) A nonheme high-spin ferrous pool in mitochondria isolated from fermenting Saccharomyces cerevisiae. Biochemistry 49(19):4227–4234. doi: 10.1021/bi1001823 CrossRefPubMedCentralPubMedGoogle Scholar
  12. Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74:247–281. doi: 10.1146/annurev.biochem.74.082803.133518 CrossRefPubMedGoogle Scholar
  13. Kim JH, Fuzery AK, Tonelli M, Ta DT, Westler WM, Vickery LE, Markley JL (2009) Structure and dynamics of the iron-sulfur cluster assembly scaffold protein IscU and its interaction with the cochaperone HscB. Biochemistry 48(26):6062–6071. doi: 10.1021/bi9002277 CrossRefPubMedCentralPubMedGoogle Scholar
  14. Kuzmic P (1996) Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal Biochem 237:260–273. doi: 10.1006/abio.1996.0238 CrossRefPubMedGoogle Scholar
  15. Lill R (2009) Function and biogenesis of iron-sulphur proteins. Nature 460(7257):831–838. doi: 10.1038/nature08301 CrossRefPubMedGoogle Scholar
  16. Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N, Stehling O, Uzarska MA, Webert H, Wilbrecht C, Muhlenhoff U (2012) The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta 1823(9):1491–1508. doi: 10.1016/j.bbamcr.2012.05.009 CrossRefPubMedGoogle Scholar
  17. Raulfs EC, O’Carroll IP, Dos Santos PC, Unciuleac MC, Dean DR (2008) In vivo iron-sulfur cluster formation. Proc Natl Acad Sci USA 105(25):8591–8596. doi: 10.1073/pnas.0803173105 CrossRefPubMedCentralPubMedGoogle Scholar
  18. Rouault TA (2014) Mammalian iron-sulphur proteins: novel insights into biogenesis and function. Nat Rev Mol Cell Biol. doi: 10.1038/nrm3909 PubMedGoogle Scholar
  19. Shi R, Proteau A, Villarroya M, Moukadiri I, Zhang L, Trempe JF, Matte A, Armengod ME, Cygler M (2010) Structural basis for Fe-S cluster assembly and tRNA thiolation mediated by IscS protein-protein interactions. PLoS Biol 8(4):1–18. doi: 10.1371/journal.pbio.1000354 CrossRefGoogle Scholar
  20. Simons TJ (1993) Measurement of Zn(II) ion concentration with fluorescence probe magfura-2. J Biochem Biophys Methods 27:25–37. doi: 10.1016/0165-022X(93)90065-V CrossRefPubMedGoogle Scholar
  21. Stehling O, Lill R (2013) The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, and diseases. Cold Spring Harb Perspect Biol 5(8):1–17. doi: 10.1101/cshperspect.a011312 CrossRefGoogle Scholar
  22. Stehling O, Wilbrecht C, Lill R (2014) Mitochondrial iron-sulfur protein biogenesis and human disease. Biochimie 100:61–77. doi: 10.1016/j.biochi.2014.01.010 CrossRefPubMedGoogle Scholar
  23. Walkup GK, Imperiali B (1997) Fluorescent chemosensors for divalent zinc based on zinc finger domains. J Am Chem Soc 119:3443–3450. doi: 10.1021/ja9642121 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Andria V. Rodrigues
    • 1
  • Ashoka Kandegedara
    • 2
  • John A. Rotondo
    • 1
  • Andrew Dancis
    • 3
  • Timothy L. Stemmler
    • 1
    • 2
    Email author
  1. 1.Departments of Biochemistry and Molecular BiologyWayne State UniversityDetroitUSA
  2. 2.Department of Pharmaceutical Sciences and the Cardiovascular Research InstituteWayne State UniversityDetroitUSA
  3. 3.Department of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations