BioMetals

, Volume 28, Issue 3, pp 481–489 | Cite as

Lessons from bloodless worms: heme homeostasis in C. elegans

Article

Abstract

Heme is an essential cofactor for proteins involved in diverse biological processes such as oxygen transport, electron transport, and microRNA processing. Free heme is hydrophobic and cytotoxic, implying that specific trafficking pathways must exist for the delivery of heme to target hemoproteins which reside in various subcellular locales. Although heme biosynthesis and catabolism have been well characterized, the pathways for trafficking heme within and between cells remain poorly understood. Caenorhabditis elegans serves as a unique animal model for uncovering these pathways because, unlike vertebrates, the worm lacks enzymes to synthesize heme and therefore is crucially dependent on dietary heme for sustenance. Using C. elegans as a genetic animal model, several novel heme trafficking molecules have been identified. Importantly, these proteins have corresponding homologs in vertebrates underscoring the power of using C. elegans, a bloodless worm, in elucidating pathways in heme homeostasis and hematology in humans. Since iron deficiency and anemia are often exacerbated by parasites such as helminths and protozoa which also rely on host heme for survival, C. elegans will be an ideal model to identify anti-parasitic drugs that target heme transport pathways unique to the parasite.

Keywords

Heme Iron Porphyrin Helminths C. elegans Micronutrient Anemia 

References

  1. Ajioka RS, Phillips JD, Kushner JP (2006) Biosynthesis of heme in mammals. Biochim Biophys Acta 1763:723–736. doi:10.1016/j.bbamcr.2006.05.005 CrossRefPubMedGoogle Scholar
  2. Atamna H, Ginsburg H (1995) Heme degradation in the presence of glutathione. A proposed mechanism to account for the high levels of non-heme iron found in the membranes of hemoglobinopathic red blood cells. J Biol Chem 270:24876–24883. doi:10.1074/jbc.270.42.24876 CrossRefPubMedGoogle Scholar
  3. Balla G, Vercellotti GM, Muller-Eberhard U, Eaton J, Jacob HS (1991) Exposure of endothelial cells to free heme potentiates damage mediated by granulocytes and toxic oxygen species. Lab Invest 64:648–655. doi:10.1016/0006-291X(90)92056-6 PubMedGoogle Scholar
  4. Cao C, O’Brien KO (2013) Pregnancy and iron homeostasis: an update. Nutr Rev 71:35–51. doi:10.1111/j.1753-4887.2012.00550.x CrossRefPubMedGoogle Scholar
  5. Chang CS, Chang KP (1985) Heme requirement and acquisition by extracellular and intracellular stages of Leishmania mexicana amazonensis. Mol Biochem Parasitol 16:267–276CrossRefPubMedGoogle Scholar
  6. Chang KP, Chang CS, Sassa S (1975) Heme biosynthesis in bacterium-protozoon symbioses: enzymic defects in host hemoflagellates and complemental role of their intracellular symbiotes. Proc Natl Acad Sci USA 72:2979–2983CrossRefPubMedCentralPubMedGoogle Scholar
  7. Chen C, Samuel TK, Sinclair J, Dailey HA, Hamza I (2011) An intercellular heme-trafficking protein delivers maternal heme to the embryo during development in C. elegans. Cell 145:720–731. doi:10.1016/j.cell.2011.04.025 CrossRefPubMedCentralPubMedGoogle Scholar
  8. Chen C, Samuel TK, Krause M, Dailey HA, Hamza I (2012) Heme utilization in the Caenorhabditis elegans hypodermal cells is facilitated by heme-responsive gene-2. J Biol Chem 287:9601–9612. doi:10.1074/jbc.M111.307694 CrossRefPubMedCentralPubMedGoogle Scholar
  9. de Almeida Engler J, Favery B, Engler G, Abad P (2005) Loss of susceptibility as an alternative for nematode resistance. Curr Opin Biotechnol 16:112–117. doi:10.1016/j.copbio.2005.01.009 CrossRefGoogle Scholar
  10. Dutta S, Furuyama K, Sassa S, Chang KP (2008) Leishmania spp.: delta-aminolevulinate-inducible neogenesis of porphyria by genetic complementation of incomplete heme biosynthesis pathway. Exp Parasitol 118:629–636. doi:10.1016/j.exppara.2007.11.013 CrossRefPubMedCentralPubMedGoogle Scholar
  11. Gilleard JS (2006) Understanding anthelmintic resistance: the need for genomics and genetics. Int J Parasitol 36:1227–1239. doi:10.1016/j.ijpara.2006.06.010 CrossRefPubMedGoogle Scholar
  12. Goodwin DC, Rowlinson SW, Marnett LJ (2000) Substitution of tyrosine for the proximal histidine ligand to the heme of prostaglandin endoperoxide synthase 2: implications for the mechanism of cyclooxygenase activation and catalysis. Biochemistry 39:5422–5432. doi:10.1021/bi992752f CrossRefPubMedGoogle Scholar
  13. Grant B, Hirsh D (1999) Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol Biol Cell 10:4311–4326. doi:10.1091/mbc.10.12.4311 CrossRefPubMedCentralPubMedGoogle Scholar
  14. Haldar M et al (2014) Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling macrophages. Cell 156:1223–1234. doi:10.1016/j.cell.2014.01.069 CrossRefPubMedCentralPubMedGoogle Scholar
  15. Hamza I, Dailey HA (2012) One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans. Biochim Biophys Acta 1823:1617–1632. doi:10.1016/j.bbamcr.2012.04.009 CrossRefPubMedCentralPubMedGoogle Scholar
  16. Hawkins MG, McGhee JD (1995) elt-2, a second GATA factor from the nematode Caenorhabditis elegans. J Biol Chem 270:14666–14671CrossRefPubMedGoogle Scholar
  17. Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, Jacobson J (2008) Helminth infections: the great neglected tropical diseases. J Clin Invest 118:1311–1321. doi:10.1172/JCI34261 CrossRefPubMedCentralPubMedGoogle Scholar
  18. Hotez PJ et al (2013) The human hookworm vaccine. Vaccine 31(Suppl 2):B227–232. doi:10.1016/j.vaccine.2012.11.034 CrossRefPubMedCentralPubMedGoogle Scholar
  19. Huynh C et al (2012) Heme uptake by Leishmania amazonensis is mediated by the transmembrane protein LHR1. PLoS Pathog 8:e1002795. doi:10.1371/journal.ppat.1002795 CrossRefPubMedCentralPubMedGoogle Scholar
  20. Ke H et al (2014) The heme biosynthesis pathway is essential for plasmodium falciparum development in mosquito stage but not in blood stages. J Biol Chem. doi:10.1074/jbc.M114.615831 PubMedCentralGoogle Scholar
  21. Keel SB et al (2008) A heme export protein is required for red blood cell differentiation and iron homeostasis. Science 319:825–828. doi:10.1126/science.1151133 CrossRefPubMedGoogle Scholar
  22. Knox D (2011) Proteases in blood-feeding nematodes and their potential as vaccine candidates. Adv Exp Med Biol 712:155–176. doi:10.1007/978-1-4419-8414-2_10 CrossRefPubMedGoogle Scholar
  23. Korolnek T, Hamza I (2014) Like iron in the blood of the people: the requirement for heme trafficking in iron metabolism. Front Pharmacol 5:126. doi:10.3389/fphar.2014.00126 CrossRefPubMedCentralPubMedGoogle Scholar
  24. Korolnek T, Zhang J, Beardsley S, Scheffer GL, Hamza I (2014) Control of metazoan heme homeostasis by a conserved multidrug resistance protein. Cell Metab 19:1008–1019. doi:10.1016/j.cmet.2014.03.030 CrossRefPubMedGoogle Scholar
  25. Liu Y, Moenne-Loccoz P, Hildebrand DP, Wilks A, Loehr TM, Mauk AG, Ortiz de Montellano PR (1999) Replacement of the proximal histidine iron ligand by a cysteine or tyrosine converts heme oxygenase to an oxidase. Biochemistry 38:3733–3743. doi:10.1021/bi982707s CrossRefPubMedGoogle Scholar
  26. McKie AT et al (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5:299–309. doi:10.1016/S1097-2765(00)80425-6 CrossRefPubMedGoogle Scholar
  27. Ohgami RS et al (2005) Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet 37:1264–1269. doi:10.1038/ng1658 CrossRefPubMedCentralPubMedGoogle Scholar
  28. Perally S, Lacourse EJ, Campbell AM, Brophy PM (2008) Heme transport and detoxification in nematodes: subproteomics evidence of differential role of glutathione transferases. J Proteome Res. doi:10.1021/pr800395x Google Scholar
  29. Perutz MF, Rossmann MG, Cullis AF, Muirhead H, Will G, North AC (1960) Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. Nature 185:416–422. doi:10.1038/185416a0 CrossRefPubMedGoogle Scholar
  30. Ponka P (1999) Cell biology of heme. Am J Med Sci 318:241–256CrossRefPubMedGoogle Scholar
  31. Rajagopal A et al (2008) Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature 453:1127–1131. doi:10.1038/nature06934 CrossRefPubMedCentralPubMedGoogle Scholar
  32. Rao AU, Carta LK, Lesuisse E, Hamza I (2005) Lack of heme synthesis in a free-living eukaryote. Proc Natl Acad Sci USA 102:4270–4275. doi:10.1073/pnas.0500877102 CrossRefPubMedCentralPubMedGoogle Scholar
  33. Sassa S (2002) The porphyrias. Photodermatol Photoimmunol Photomed 18:56–67. doi:10.1034/j.1600-0781.2002.180202.x CrossRefPubMedGoogle Scholar
  34. Severance S, Hamza I (2009) Trafficking of heme and porphyrins in metazoa. Chem Rev 109:4596–4616. doi:10.1021/cr9001116 CrossRefPubMedCentralPubMedGoogle Scholar
  35. Severance S et al (2010) Genome-wide analysis reveals novel genes essential for heme homeostasis in Caenorhabditis elegans. PLoS Genet 6:e1001044. doi:10.1371/journal.pgen.1001044 CrossRefPubMedCentralPubMedGoogle Scholar
  36. Sinclair J, Hamza I (2010) A novel heme response element mediates transcriptional regulation in Caenorhabditis elegans. J Biol Chem. doi:10.1074/jbc.M110.167619 PubMedCentralPubMedGoogle Scholar
  37. Spieth J, Blumenthal T (1985) The Caenorhabditis elegans vitellogenin gene family includes a gene encoding a distantly related protein. Mol Cell Biol 5:2495–2501. doi:10.1128/MCB.5.10.2495 PubMedCentralPubMedGoogle Scholar
  38. Stephenson LS, Latham MC, Ottesen EA (2000) Malnutrition and parasitic helminth infections. Parasitology 121(S1):S23–38. doi:10.1017/S0031182000006491 CrossRefPubMedGoogle Scholar
  39. The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018. doi:10.1126/science.282.5396.2012 CrossRefGoogle Scholar
  40. Vincent SH (1989) Oxidative effects of heme and porphyrins on proteins and lipids. Semin Hematol 26:105–113PubMedGoogle Scholar
  41. Waller PJ (2006) From discovery to development: current industry perspectives for the development of novel methods of helminth control in livestock. Vet Parasitol 139:1–14. doi:10.1016/j.vetpar.2006.02.036 CrossRefPubMedGoogle Scholar
  42. West AR, Oates PS (2008) Mechanisms of heme iron absorption: current questions and controversies. World J Gastroenterol 14:4101–4110CrossRefPubMedCentralPubMedGoogle Scholar
  43. White C et al (2013) HRG1 is essential for heme transport from the phagolysosome of macrophages during erythrophagocytosis. Cell Metab 17:261–270. doi:10.1016/j.cmet.2013.01.005 CrossRefPubMedCentralPubMedGoogle Scholar
  44. Williamson AL et al (2004) A multi-enzyme cascade of hemoglobin proteolysis in the intestine of blood-feeding hookworms. J Biol Chem 279:35950–35957. doi:10.1074/jbc.M405842200 CrossRefPubMedGoogle Scholar
  45. Yang Z et al (2010) Kinetics and specificity of feline leukemia virus subgroup C receptor (FLVCR) export function and its dependence on hemopexin. J Biol Chem 285:28874–28882. doi:10.1074/jbc.M110.119131 CrossRefPubMedCentralPubMedGoogle Scholar
  46. Yuan X, Protchenko O, Philpott CC, Hamza I (2012) Topologically conserved residues direct heme transport in HRG-1-related proteins. J Biol Chem 287:4914–4924. doi:10.1074/jbc.M111.326785 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Animal & Avian SciencesUniversity of MarylandCollege ParkUSA
  2. 2.Department of Cell Biology & Molecular GeneticsUniversity of MarylandCollege ParkUSA

Personalised recommendations