Advertisement

BioMetals

, Volume 28, Issue 3, pp 553–566 | Cite as

Synthesis, characterization and biological activity of Cu(II), Zn(II) and Re(I) complexes derived from S-benzyldithiocarbazate and 3-acetylcoumarin

  • May Lee Low
  • Georgiana Paulus
  • Pierre Dorlet
  • Régis Guillot
  • Rozita Rosli
  • Nicolas Delsuc
  • Karen A. Crouse
  • Clotilde Policar
Article

Abstract

Cu(II), Zn(II) and Re(I) complexes have been synthesized with the Schiff base, N′-[1-(2-oxo-2H-chromen-3-yl)-ethylidene]-hydrazinecarbodithioic acid benzyl ester (SBCM-H) which was prepared by condensation of S-benzyldithiocarbazate and 3-acetylcoumarin. The metal complexes were characterized on the basis of various physico-chemical and spectroscopic techniques including elemental analysis and electrochemical studies, and FT-IR, UV–Vis, NMR, EPR and mass spectroscopy. The Schiff base was found to behave as a bidentate ligand coordinating with Cu(II) and Zn(II) in the thiolate form with 1:2 metal to ligand stoichiometry. Crystals suitable for X-ray diffractometry (XRD) were obtained from the reaction of ReCl(CO)5 with SBCM-H forming a centrosymmetric dimeric complex Re2L2(CO)6 linked by Re–S–Re bridges, where S is the thiolate sulfur of the N,S-bidentate ligand. This Re(I) complex is the first metal carbonyl complex with a bidentate dithiocarbazate ligand to have been characterized by XRD. Cytotoxicity assays revealed enhancement of the bioactivity of SBCM-H upon complexation. Both Cu(II) and Re(I) complexes are found to be active against human breast adenocarcinoma cancer cell lines MDA-MB-231 and MCF-7.

Graphical Abstract

Keywords

3-Acetylcoumarin S-Benzyldithiocarbazate Copper(II) Zinc(II) Rhenium(I) 

Abbreviations

Abs

Absorbance

ACN

Acetonitrile

CI

Chemical ionization

CV

Cyclic voltammetry

DMEM

Dulbecco’s modified Eagle’s medium

DMF

Dimethylformamide

DMSO

Dimethyl sulfoxide

DMSO-d6

Deuterated dimethyl sulfoxide

ER

Estrogen receptor

EPR

Electron paramagnetic resonance

ESI–MS

Electrospray ionization–mass spectra

FAB

Fast atom bombardment

FT-IR

Fourier transform-infrared spectroscopy

GC–MS

Gas chromatography–mass spectral

HR-MS

High resolution-mass spectra

MCF-7

Human breast carcinoma cells expressing nuclear estrogen receptors

MDA-MB-231

Human breast carcinoma cells not expressing nuclear estrogen receptors

MS

Mass spectroscopy

MTT

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NMR

Nuclear magnetic resonance

ORTEP

Oak ridge thermal ellipsoid plot

PBS

Phosphate buffered saline

Pyta

4-(2-Pyridyl)-1,2,3-triazole

RP-HPLC

Reversed phase-high performance liquid chromatography

SBCM-H

N′-[1-(2-Oxo-2H-chromen-3-yl)-ethylidene]-hydrazinecarbodithioic acid benzyl ester

% T

Percentage of transmission

TFA

Trifluoroacetic acid

UV–Vis

Ultraviolet–Visible

XRD

X-ray diffractometry

Notes

Acknowledgments

Support for the Project came from Universiti Putra Malaysia (UPM), the Ministry of Higher Education (Malaysia), French ANR Blanc 2010, METABACT Grant and the French Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INSB-05-01. M. L. Low is grateful for the award of an Erasmus Mundus: Maheva Scholarship and a UPM Graduate Research Fellowship (GRF).

Supplementary material

10534_2015_9831_MOESM1_ESM.doc (1.7 mb)
Supplementary material 1 (DOC 1734 kb)

References

  1. Afrasiabi Z, Sinn E, Padhye S, Dutta S, Padhye S, Newton C, Anson CE, Powell AK (2003) Transition metal complexes of phenanthrenequinone thiosemicarbazone as potential anticancer agents: synthesis, structure, spectroscopy, electrochemistry and in vitro anticancer activity against human breast cancer cell-line, T47D. J Inorg Biochem 95:306–314CrossRefPubMedGoogle Scholar
  2. Ali MA, Bakar HJA, Mirza AH, Smith SJ, Gahan LR, Bernhardt PV (2008) Preparation, spectroscopic characterization and X-ray crystal and molecular structures of nickel(II), copper(II) and zinc(II) complexes of the Schiff base formed from isatin and S-methyldithiocarbazate (Hisa-sme). Polyhedron 27:71–79CrossRefGoogle Scholar
  3. Bacher F, Enyedy EA, Nagy NR, Rockenbauer A, Bognar GM, Trondl R, Novak MS, Klapproth E, Kiss T, Arion VB (2013) Copper(II) complexes with highly water-soluble l- and d-proline-thiosemicarbazone conjugates as potential inhibitors of topoisomerase IIα. Inorg Chem 52:8895–8908CrossRefPubMedGoogle Scholar
  4. Bagihalli GB, Avaji PG, Patil SA, Badami PS (2008) Synthesis, spectral characterization, in vitro antibacterial, antifungal and cytotoxic activities of Co(II), Ni(II) and Cu(II) complexes with 1,2,4-triazole Schiff bases. Eur J Med Chem 43:2639–2649CrossRefPubMedGoogle Scholar
  5. Barve V, Ahmed F, Adsule S, Banerjee S, Kulkarni S, Katiyar P, Anson CE, Powell AK, Padhye S, Sarkar FH (2006) Synthesis, molecular characterization, and biological activity of novel synthetic derivatives of chromen-4-one in human cancer cells. J Med Chem 49:3800–3808CrossRefPubMedGoogle Scholar
  6. Basha MT, Chartres JD, Pantarat N, Ali MA, Mirza AH, Kalinowski DS, Richardson DR, Bernhardt PV (2012) Heterocyclic dithiocarbazate iron chelators: Fe coordination chemistry and biological activity. Dalton Trans 41:6536–6548CrossRefPubMedGoogle Scholar
  7. Belicchi Ferrari M, Bisceglie F, Gasparri Fava G, Pelosi G, Tarasconi P, Albertini R, Pinelli S (2002a) Synthesis, characterization and biological activity of two new polymeric copper(II) complexes with α-ketoglutaric acid thiosemicarbazone. J Inorg Biochem 89:36–44CrossRefPubMedGoogle Scholar
  8. Belicchi Ferrari M, Bisceglie F, Pelosi G, Sassi M, Tarasconi P, Cornia M, Capacchi S, Albertini R, Pinelli S (2002b) Synthesis, characterization and X-ray structures of new antiproliferative and proapoptotic natural aldehyde thiosemicarbazones and their nickel(II) and copper(II) complexes. J Inorg Biochem 90:113–126CrossRefPubMedGoogle Scholar
  9. Belicchi Ferrari M, Bisceglie F, Pelosi G, Tarasconi P, Albertini R, Dall’Aglio PP, Pinelli S, Bergamo A, Sava G (2004) Synthesis, characterization and biological activity of copper complexes with pyridoxal thiosemicarbazone derivatives. X-ray crystal structure of three dimeric complexes. J Inorg Biochem 98:301–312CrossRefPubMedGoogle Scholar
  10. Bertrand HC, Clède S, Guillot R, Lambert F, Policar C (2014) Luminescence modulations of rhenium tricarbonyl complexes induced by structural variations. Inorg Chem 53:6204–6223CrossRefPubMedGoogle Scholar
  11. Beshir AB, Guchhait SK, Gascon JA, Fenteany G (2008) Synthesis and structure-activity relationships of metal-ligand complexes that potently inhibit cell migration. Bioorg Med Chem Lett 18:498–504CrossRefPubMedGoogle Scholar
  12. Bisceglie F, Pinelli S, Alinovi R, Tarasconi P, Buschini A, Mussi F, Mutti A, Pelosi G (2012) Copper(II) thiosemicarbazonate molecular modifications modulate apoptotic and oxidative effects on U937 cell line. J Inorg Biochem 116:195–203CrossRefPubMedGoogle Scholar
  13. Blumberg WE, Peisach J (1968) Bis (thiosemicarbazone) and other nitrogen and sulfur ligated complexes of copper (II). J Chem Phys 49:1793–1802CrossRefGoogle Scholar
  14. Boschi A, Massi A, Uccelli L, Pasquali M, Duatti A (2010) PEGylated N-methyl-S-methyl dithiocarbazate as a new reagent for the high-yield preparation of nitrido Tc-99m and Re-188 radiopharmaceuticals. Nucl Med Biol 37:927–934CrossRefPubMedGoogle Scholar
  15. Carballo R, Casas JS, Garcia-Martinez E, Pereiras-Gabian G, Sanchez A, Sordo J, Vazquez-Lopez EM, Garcia-Monteagudo JC, Abram U (2002) Reaction of bromopentacarbonylrhenium(I) with ferrocenylcarbaldehyde thiosemicarbazones: the first X-ray diffraction studies of metal carbonyl complexes containing bidentate thiosemicarbazone ligand. J Organomet Chem 656:1–10CrossRefGoogle Scholar
  16. Chakraborty A, Kumar P, Ghosh K, Roy P (2010) Evaluation of a Schiff base copper complex compound as potent anticancer molecule with multiple targets of action. Eur J Pharmacol 647:1–12CrossRefPubMedGoogle Scholar
  17. Chan MHE, Crouse KA, Tahir MIM, Rosli R, Umar-Tsafe N, Cowley AR (2008) Synthesis and characterization of cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes of benzyl N-[1-(thiophen-2-yl) ethylidene] hydrazine carbodithioate and benzyl N-[1-(thiophen-3-yl) ethylidene] hydrazine carbodithioate and the X-ray crystal structure of bis {benzyl N-[1-(thiophen-2-yl) ethylidene] hydrazine carbodithioate} nickel(II). Polyhedron 27:1141–1149CrossRefGoogle Scholar
  18. Chandra S, Sangeetika X (2004) EPR, magnetic and spectral studies of copper(II) and nickel(II) complexes of Schiff base macrocyclic ligand derived from thiosemicarbazide and glyoxal. Spectrochim Acta Part A 60:147–157CrossRefGoogle Scholar
  19. Chikate RC, Belapure AR, Padhye SB, West DX (2005) Transition metal quinone-thiosemicarbazone complexes 1: evaluation of EPR covalency parameters and redox properties of pseudo-square-planar copper(II)-naphthoquinone thiosemicarbazone. Polyhedron 24:889–899CrossRefGoogle Scholar
  20. Clède S, Policar C (2015) Metal-carbonyl units for vibrational and luminescence imaging: towards multimodality. Chem Eur J 21:942–958CrossRefPubMedGoogle Scholar
  21. Clède S, Lambert F, Sandt C, Gueroui Z, Plamont MA, Dumas P, Vessières A, Policar C (2012) A rhenium tris-carbonyl derivative as a single core multimodal probe for imaging (SCoMPI) combining infrared and luminescent properties. Chem Commun 48:7729–7731CrossRefGoogle Scholar
  22. Clède S, Lambert F, Sandt C, Kascakova S, Unger M, Harté E, Plamont MA, Saint-Fort R, Deniset-Besseau A, Gueroui Z, Hirschmugl CJ, Vessières A, Policar C (2013) Detection of an estrogen derivative in two breast cancer cell lines using a single core multimodal probe for imaging (SCoMPI) imaged by a panel of luminescent and vibrational techniques. Analyst 138:5627–5638CrossRefPubMedGoogle Scholar
  23. Clède S, Lambert F, Saint-Fort R, Plamont MA, Bertrand H, Vessières A, Policar C (2014) Influence of the side-chain length on the cellular uptake and the cytotoxicity of rhenium triscarbonyl derivatives: a bimodal infrared and luminescence quantitative study. Chem Eur J 20:8714–8722CrossRefPubMedGoogle Scholar
  24. Clède S, Delsuc N, Laugel C, Lambert F, Sandt C, Baillet-Guffroy A, Policar C (2015) An easy-to-detect nona-arginine peptide for epidermal targeting. Chem Commun 51:2687–2689CrossRefGoogle Scholar
  25. Creaven BS, Devereux M, Karcz D, Kellett A, McCann M, Noble A, Walsh M (2009) Copper(II) complexes of coumarin-derived Schiff bases and their anti-Candida activity. J Inorg Biochem 103:1196–1203CrossRefPubMedGoogle Scholar
  26. Czerwieniec R, Kapturkiewicz A, Nowacki J (2005) Re(I)(tricarbonyl)+ complexes with anionic N∩S thioxalato ligands. Inorg Chem Commun 8:34–37CrossRefGoogle Scholar
  27. Da Silva AS, De Silva MAA, Carvalho CEM, Antunes OAC, Herrera JOM, Brinn IM, Mangrich AS (1999) Coordination complexes of bifunctional compounds: I. synthesis and properties of bis [5-(2-oxyphenyl)-3-phenyl-1, 2, 4-oxadiazolyl] copper (II). a fluorescent coordination compound of Cu(II). Inorg Chim Acta 292:1–6CrossRefGoogle Scholar
  28. Datta P, Mukhopadhyay AP, Manna P, Tiekink ER, Sil PC, Sinha C (2011) Structure, photophysics, electrochemistry, DFT calculation, and in vitro antioxidant activity of coumarin Schiff base complexes of Group 6 metal carbonyls. J Inorg Biochem 105:577–588CrossRefPubMedGoogle Scholar
  29. Dawara L, Joshi SC, Singh RV (2012) Synthesis, characterization, and antimicrobial and anti spermatogenic activity of bismuth(III) and arsenic(III) derivatives of biologically potent nitrogen and sulfur donor ligands. Int J Inorg Chem 2012:1–9CrossRefGoogle Scholar
  30. Díaz A, Pogni R, Cao R, Basosi R (1998) EPR characterization of a series of mono- and bis-thiosemicarbazone copper(II) complexes. Inorg Chim Acta 275:552–556CrossRefGoogle Scholar
  31. Donnelly PS (2011) The role of coordination chemistry in the development of copper and rhenium radiopharmaceuticals. Dalton Trans 40:999–1010CrossRefPubMedGoogle Scholar
  32. Duncan C, White AR (2012) Copper complexes as therapeutic agents. Metallomics 4:127–138CrossRefPubMedGoogle Scholar
  33. Farrer NJ, Sadler PJ (2011) Medicinal inorganic chemistry: state of art, new trends and vision of the future. In: Alessio E (ed) Bioinorganic medicinal chemistry. Wiley, Weinheim, pp 1–47CrossRefGoogle Scholar
  34. Farrugia LJ (1999) WinGX suite for small-molecule single-crystal crystallography. J Appl Crystallogr 32:837–838CrossRefGoogle Scholar
  35. Fuks L, Gniazdowska E, Koźmiński P (2010) Tricarbonylrhenium(I) complexes with anionic ligands containing S and O donor atoms—potential radiopharmaceutical precursors. Polyhedron 29:634–638CrossRefGoogle Scholar
  36. Gandin V, Porchia M, Tisato F, Zanella A, Severin E, Dolmella A, Marzano C (2013) Novel mixed-ligand copper(I) complexes: role of diimine ligands on cytotoxicity and genotoxicity. J Med Chem 56:7416–7430CrossRefPubMedGoogle Scholar
  37. Gupte A, Mumper RJ (2009) Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev 35:32–46CrossRefPubMedGoogle Scholar
  38. How FNF, Crouse KA, Tahir MIM, Tarafder MTH, Cowley AR (2008) Synthesis, characterization and biological studies of S-benzyl-β-N-(benzoyl) dithiocarbazate and its metal complexes. Polyhedron 27:3325–3329CrossRefGoogle Scholar
  39. How FNF, Crouse KA, Tahir MIM, Watkin DJ (2009) Synthesis and structure determination of S, S’-(naphthalen-2-ylmethyl sulfanyl (1-p-tolyl-ethylidene)hydrazine. J Chem Crystallogr 39:894–897CrossRefGoogle Scholar
  40. Hunoor RS, Patil BR, Badiger DS, Vadavi RS, Gudasi KB, Chandrashekhar VM, Muchchandi IS (2010) Spectroscopic, magnetic and thermal studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of 3-acetyl coumarin-isonicotinoyl hydrazone and their antimicrobial and anti-tubercular activity evaluation. Spectrochim Acta Part A 77:838–844CrossRefGoogle Scholar
  41. Islam MAAA, Sheikh MC, Alam MS, Zangrando E, Alam MA, Tarafder MTH, Miyatake R (2014) Synthesis, characterization and bio-activity of a bidentate NS Schiff base of S-allyldithiocarbazate and its divalent metal complexes: X-ray crystal structures of the free ligand and its nickel(II) complex. Transit Met Chem 39:141–149CrossRefGoogle Scholar
  42. Jansson PJ, Sharpe PC, Bernhardt PV, Richardson DR (2010) Novel thiosemicarbazones of the ApT and DpT series and their copper complexes: identification of pronounced redox activity and characterization of their antitumor activity. J Med Chem 53:5759–5769CrossRefPubMedGoogle Scholar
  43. Joseph J, Nagashri K, Janaki GB (2012) Novel metal based anti-tuberculosis agent: synthesis, characterization, catalytic and pharmacological activities of copper complexes. Eur J Med Chem 49:151–163CrossRefPubMedGoogle Scholar
  44. Khan KM, Ambreen N, Hussain S, Perveen S, Iqbal Choudhary M (2009) Schiff Bases of 3-formylchromone as thymidine phosphorylase inhibitors. Bioorg Med Chem 17:2983–2988CrossRefPubMedGoogle Scholar
  45. Khoo TJ, Break MKB, Crouse KA, Tahir MIM, Ali AM, Cowley AR, Watkin DJ, Tarafder MTH (2014) Synthesis, characterization and biological activity of two Schiff base ligands and their nickel(II), copper(II), zinc(II) and cadmium(II) complexes derived from S-4-picolyldithiocarbazate and X-ray crystal structure of cadmium(II) complex derived from pyridine-2-carboxaldehyde. Inorg Chim Acta 413:68–76CrossRefGoogle Scholar
  46. Kivelson D, Nieman R (1961) ESR studies on the bonding in copper complexes. J Chem Phys 35:149–155CrossRefGoogle Scholar
  47. Kulkarni A, Patil SA, Badami PS (2009) Synthesis, characterization, DNA cleavage and in vitro antimicrobial studies of La(III), Th(IV) and VO(IV) complexes with Schiff bases of coumarin derivatives. Eur J Med Chem 44:2904–2912CrossRefPubMedGoogle Scholar
  48. Li QX, Tang HA, Li YZ, Wang M, Wang LF, Xia CG (2000) Synthesis, characterization, and antibacterial activity of novel Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) complexes with vitamin K3-thiosemicarbazone. J Inorg Biochem 78:167–174CrossRefPubMedGoogle Scholar
  49. Lobana TS, Sharma R, Bawa G, Khanna S (2009) Bonding and structure trends of thiosemicarbazone derivatives of metals—an overview. Coord Chem Rev 253:977–1055CrossRefGoogle Scholar
  50. Low ML, Maigre L, Dorlet P, Guillot R, Pages JM, Crouse KA, Policar C, Delsuc N (2014) Conjugation of a new series of dithiocarbazate Schiff base copper(II) complexes with vectors selected to enhance antibacterial activity. Bioconj Chem 25:2269–2284CrossRefGoogle Scholar
  51. Ma J, Jemal A (2013) Breast cancer statistics. Breast cancer metastasis and drug resistance. Springer, New York, pp 1–18CrossRefGoogle Scholar
  52. Manan MAFA, Crouse KA, Tahir MIM, Rosli R, How FNF, Watkin DJ, Slawin AZ (2011a) Synthesis, characterization and cytotoxic activity of S-benzyldithiocarbazate Schiff bases derived from 5-fluoroisatin, 5-chloroisatin, 5-bromoisatin and their crystal structures. J Chem Crystallogr 41:1630–1641CrossRefGoogle Scholar
  53. Manan MAFA, Tahir MIM, Crouse KA, Rosli R, How FNF, Watkin DJ (2011b) The crystal structure and cytotoxicity of the centrosymmetric Cu(II) complex derived from S-methyldithiocarbazate with isatin. J Chem Crystallogr 41:1866–1871CrossRefGoogle Scholar
  54. Mevellec F, Roucoux A, Noiret N, Patin H (2002) Novel six-coordinate oxorhenium(V) ‘3 + 2′ mixed-ligand complexes carrying the SNO/SN donor atom set. Inorg Chim Acta 332:30–36CrossRefGoogle Scholar
  55. Milunovic MNM, Enyedy EA, Nagy NR, Kiss T, Trondl R, Jakupec MA, Keppler BK, Krachler R, Novitchi G, Arion VB (2012) L- and D-proline thiosemicarbazone conjugates: coordination behavior in solution and the effect of copper(II) coordination on their antiproliferative activity. Inorg Chem 51:9309–9321CrossRefPubMedGoogle Scholar
  56. Mirza AH, Hamid MHS, Aripin S, Karim MR, Arifuzzaman M, Ali MA, Bernhardt PV (2014) Synthesis, spectroscopy and X-ray crystal structures of some zinc(II) and cadmium(II) complexes of the 2-pyridinecarboxaldehyde Schiff bases of S-methyl-and S-benzyldithiocarbazates. Polyhedron 74:16–23CrossRefGoogle Scholar
  57. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefPubMedGoogle Scholar
  58. Nair MS, Joseyphus RS (2008) Synthesis and characterization of Co(II), Ni(II), Cu(II) and Zn(II) complexes of tridentate Schiff base derived from vanillin and DL-α-aminobutyric acid. Spectrochim Acta Part A 70:749–753CrossRefGoogle Scholar
  59. Ngarivhume T, Díaz A, Cao R, Ortiz M, Sánchez I (2005) Association capacity of ribose bis(thiosemicarbazonato) copper(II) with nitric oxide. Synth React Inorg Met Org Chem 35:795–800CrossRefGoogle Scholar
  60. Padhye S, Yang H, Jamadar A, Cui Q, Chavan D, Dominiak K, McKinney J, Banerjee S, Dou QP, Sarkar F (2009) New difluoro Knoevenagel condensates of curcumin, their Schiff bases and copper complexes as proteasome inhibitors and apoptosis inducers in cancer cells. Pharm Res 26:1874–1880CrossRefPubMedCentralPubMedGoogle Scholar
  61. Paterson BM, Donnelly PS (2011) Copper complexes of bis (thiosemicarbazones): from chemotherapeutics to diagnostic and therapeutic radiopharmaceuticals. Chem Soc Rev 40:3005–3018CrossRefPubMedGoogle Scholar
  62. Paterson BM, Karas JA, Scanlon DB, White JM, Donnelly PS (2010) Versatile new bis (thiosemicarbazone) bifunctional chelators: synthesis, conjugation to bombesin (7 − 14)-NH2, and copper-64 radiolabeling. Inorg Chem 49:1884–1893CrossRefPubMedGoogle Scholar
  63. Phaniband MA, Dhumwad SD, Pattan SR (2011) Synthesis, characterization, antimicrobial, and DNA cleavage studies of metal complexes of coumarin Schiff bases. Med Chem Res 20:493–502CrossRefGoogle Scholar
  64. Raman N, Muthuraj V, Ravichandran S, Kulandaisamy A (2003) Synthesis, characterisation and electrochemical behaviour of Cu(II), Co(II), Ni(II) and Zn(II) complexes derived from acetylacetone and p-anisidine and their antimicrobial activity. J Chem Sci 115:161–167CrossRefGoogle Scholar
  65. Rapheal PF, Manoj E, Kurup MRP (2007) Copper(II) complexes of N(4)-substituted thiosemicarbazones derived from pyridine-2-carbaldehyde: crystal structure of a binuclear complex. Polyhedron 26:818–828CrossRefGoogle Scholar
  66. Ravoof TBSA, Crouse KA, Tahir MIM, How FNF, Rosli R, Watkin DJ (2010) Synthesis, characterization and biological activities of 3-methylbenzyl2-(6-methyl pyridin-2-ylmethylene)hydrazine carbodithioate and its transition metal complexes. Transit Met Chem 35:871–876CrossRefGoogle Scholar
  67. Santos IG, Abram U, Alberto R, Lopez EV, Sanchez A (2004) Tricarbonylrhenium(I) complexes with thiosemicarbazone derivatives of 2-acetylpyridine and 2-pyridine formamide showing two unusual coordination modes of tridentate thiosemicarbazone ligands. Inorg Chem 43:1834–1836CrossRefPubMedGoogle Scholar
  68. Senthil Raja D, Bhuvanesh NS, Natarajan K (2011) Biological evaluation of a novel water soluble sulphur bridged binuclear copper(II) thiosemicarbazone complex. Eur J Med Chem 46:4584–4594CrossRefPubMedGoogle Scholar
  69. Sheldrick GM (1997a) SHELXS-97, Program for crystal structure solution, University of Göttingen, GöttingenGoogle Scholar
  70. Sheldrick GM (1997b) SHELXL-97, Program for the refinement of crystal structures from diffraction data, University of Göttingen, GöttingenGoogle Scholar
  71. Su X, Aprahamian I (2014) Hydrazone-based switches, metallo-assemblies and sensors. Chem Soc Rev 43:1963–1981CrossRefPubMedGoogle Scholar
  72. Szymański P, Frączek T, Markowicz M, Mikiciuk-Olasik E (2012) Development of copper based drugs, radiopharmaceuticals and medical materials. Biometals 25:1089–1112CrossRefPubMedCentralPubMedGoogle Scholar
  73. Tarafder MTH, Ali AM, Wong YW, Wong SH, Crouse KA (2001a) Complexes of transition and nontransition metals of dithiocarbazate ion and their biological activities. Synth React Inorg Met Org Chem 31:115–125CrossRefGoogle Scholar
  74. Tarafder MTH, Saravanan N, Crouse KA (2001b) Coordination chemistry and biological activity of nickel(II) and copper(II) ion complexes with nitrogen-sulphur donor ligands derived from S-benzyldithiocarbazate (SBDTC). Transit Met Chem 26:613–618CrossRefGoogle Scholar
  75. Tiwari KN, Monserrat JP, Hequet A, Ganem-Elbaz C, Cresteil T, Jaouen G, Vessières A, Hillard EA, Jolivalt C (2012) In vitro inhibitory properties of ferrocene-substituted chalcones and aurones on bacterial and human cell cultures. Dalton Trans 41:6451–6457CrossRefPubMedGoogle Scholar
  76. Yang G, Nowsheen S, Aziz K, Georgakilas AG (2013) Toxicity and adverse effects of tamoxifen and other anti-estrogen drugs. Pharmacol Ther 139:392–404CrossRefPubMedGoogle Scholar
  77. Zhang HJ, Qian Y, Zhu DD, Yang XG, Zhu HL (2011) Synthesis, molecular modeling and biological evaluation of chalcone thiosemicarbazide derivatives as novel anticancer agents. Eur J Med Chem 46:4702–4708CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • May Lee Low
    • 1
    • 2
  • Georgiana Paulus
    • 2
  • Pierre Dorlet
    • 3
  • Régis Guillot
    • 4
  • Rozita Rosli
    • 5
    • 6
  • Nicolas Delsuc
    • 1
  • Karen A. Crouse
    • 2
    • 7
  • Clotilde Policar
    • 1
  1. 1.École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC, Univ Paris 06, CNRS UMR 7203 LBMParisFrance
  2. 2.Department of ChemistryUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Laboratoire Stress Oxydant et Détoxication, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-SudGif sur Yvette CedexFrance
  4. 4.Institut de Chimie Moléculaire et des Matériaux d’OrsayUniversité Paris-SudOrsayFrance
  5. 5.UPM-MAKNA Cancer Research Laboratory, Institute of BioscienceUniversiti Putra MalaysiaSerdangMalaysia
  6. 6.Department of Obstetrics and Gynaecology, Faculty of Medicine and Health SciencesUniversiti Putra MalaysiaSerdangMalaysia
  7. 7.Department of ChemistryCape Breton UniversitySydneyCanada

Personalised recommendations