, Volume 28, Issue 3, pp 491–508 | Cite as

Manganese uptake and streptococcal virulence

  • Bart A. Eijkelkamp
  • Christopher A. McDevitt
  • Todd Kitten


Streptococcal solute-binding proteins (SBPs) associated with ATP-binding cassette transporters gained widespread attention first as ostensible adhesins, next as virulence determinants, and finally as metal ion transporters. In this mini-review, we will examine our current understanding of the cellular roles of these proteins, their contribution to metal ion homeostasis, and their crucial involvement in mediating streptococcal virulence. There are now more than 35 studies that have collected structural, biochemical and/or physiological data on the functions of SBPs across a broad range of bacteria. This offers a wealth of data to clarify the formerly puzzling and contentious findings regarding the metal specificity amongst this group of essential bacterial transporters. In particular we will focus on recent findings related to biological roles for manganese in streptococci. These advances will inform efforts aimed at exploiting the importance of manganese and manganese acquisition for the design of new approaches to combat serious streptococcal diseases.


ABC transporter Manganese Zinc Cluster A–I SBP Metal binding Solute-binding protein Streptococcus Virulence 



This work was supported by the Australian Research Council Grant DP120103957 to C.A.M., the National Health & Medical Research Council Project Grant 1022240 and 1080784 to C.A.M., and National Institutes of Health Grants R01AI47841 and R56AI085195 to T.K. This work is solely the responsibility of the authors and does not reflect the views of the National Institutes of Health.

Conflict of interest

The authors declare no competing financial interests.


  1. Abate F, Malito E, Cozzi R, Lo Surdo P, Maione D, Bottomley MJ (2014) Apo, Zn2+-bound and Mn2+-bound structures reveal ligand binding properties of SitA from the pathogen Staphylococcus pseudintermedius. Biosci Rep 34:e00154Google Scholar
  2. Adir N, Rukhman V, Brumshtein B, Anati R (2002) Preliminary X-ray crystallographic analysis of a soluble form of MntC, a periplasmic manganese-binding component of an ABC-type Mn transporter from Synechocystis sp. PCC 6803. Acta Crystallogr D 58:1476–1478PubMedGoogle Scholar
  3. Akers JC, HoDac H, Lathrop RH, Tan M (2011) Identification and functional analysis of CT069 as a novel transcriptional regulator in Chlamydia. J Bacteriol 193:6123–6131PubMedCentralPubMedGoogle Scholar
  4. Ammendola S, Pasquali P, Pistoia C, Petrucci P, Petrarca P, Rotilio G, Battistoni A (2007) High-affinity Zn2+ uptake system ZnuABC is required for bacterial zinc homeostasis in intracellular environments and contributes to the virulence of Salmonella enterica. Infect Immun 75:5867–5876PubMedCentralPubMedGoogle Scholar
  5. Anderson DS, Adhikari P, Nowalk AJ, Chen CY, Mietzner TA (2004) The hFbpABC transporter from Haemophilus influenzae functions as a binding-protein-dependent ABC transporter with high specificity and affinity for ferric iron. J Bacteriol 186:6220–6229PubMedCentralPubMedGoogle Scholar
  6. Anjem A, Imlay JA (2012) Mononuclear iron enzymes are primary targets of hydrogen peroxide stress. J Biol Chem 287:15544–15556PubMedCentralPubMedGoogle Scholar
  7. Anjem A, Varghese S, Imlay JA (2009) Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli. Mol Microbiol 72:844–858PubMedCentralPubMedGoogle Scholar
  8. Banerjee S, Wei B, Bhattacharyya-Pakrasi M, Pakrasi HB, Smith TJ (2003) Structural determinants of metal specificity in the zinc transport protein ZnuA from Synechocystis 6803. J Mol Biol 333:1061–1069PubMedGoogle Scholar
  9. Barnard J, Stinson M (1996) The alpha-hemolysin of Streptococcus gordonii is hydrogen peroxide. Infect Immun 64:3853–3857PubMedCentralPubMedGoogle Scholar
  10. Barnese K, Gralla EB, Valentine JS, Cabelli DE (2012) Biologically relevant mechanism for catalytic superoxide removal by simple manganese compounds. Proc Natl Acad Sci USA 109:6892–6897PubMedCentralPubMedGoogle Scholar
  11. Bartsevich VV, Pakrasi HB (1995) Molecular identification of an ABC transporter complex for manganese: analysis of a cyanobacterial mutant strain impaired in the photosynthetic oxygen evolution process. EMBO J 14:1845–1853PubMedCentralPubMedGoogle Scholar
  12. Bates CS, Toukoki C, Neely MN, Eichenbaum Z (2005) Characterization of MtsR, a new metal regulator in group A streptococcus, involved in iron acquisition and virulence. Infect Immun 73:5743–5753PubMedCentralPubMedGoogle Scholar
  13. Bayle L, Chimalapati S, Schoehn G, Brown J, Vernet T, Durmort C (2011) Zinc uptake by Streptococcus pneumoniae depends on both AdcA and AdcAII and is essential for normal bacterial morphology and virulence. Mol Microbiol 82:904–916PubMedGoogle Scholar
  14. Bearden SW, Perry RD (1999) The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol Microbiol 32:403–414PubMedGoogle Scholar
  15. Bearden SW, Staggs TM, Perry RD (1998) An ABC transporter system of Yersinia pestis allows utilization of chelated iron by Escherichia coli SAB11. J Bacteriol 180:1135–1147PubMedCentralPubMedGoogle Scholar
  16. Beres SB, Richter EW, Nagiec MJ, Sumby P, Porcella SF, DeLeo FR, Musser JM (2006) Molecular genetic anatomy of inter- and intraserotype variation in the human bacterial pathogen group A Streptococcus. Proc Natl Acad Sci USA 103:7059–7064PubMedCentralPubMedGoogle Scholar
  17. Berntsson RP, Smits SH, Schmitt L, Slotboom DJ, Poolman B (2010) A structural classification of substrate-binding proteins. FEBS Lett 584:2606–2617PubMedGoogle Scholar
  18. Berry AM, Paton JC (1996) Sequence heterogeneity of PsaA, a 37-kilodalton putative adhesin essential for virulence of Streptococcus pneumoniae. Infect Immun 64:5255–5262PubMedCentralPubMedGoogle Scholar
  19. Bishop C, Aanensen D, Jordan G, Kilian M, Hanage W, Spratt B (2009) Assigning strains to bacterial species via the internet. BMC Biol 7:3PubMedCentralPubMedGoogle Scholar
  20. Bobrov AG, Kirillina O, Fetherston JD, Miller MC, Burlison JA, Perry RD (2014) The Yersinia pestis siderophore, yersiniabactin, and the ZnuABC system both contribute to zinc acquisition and the development of lethal septicaemic plague in mice. Mol Microbiol 93:759–775PubMedGoogle Scholar
  21. Bray BA, Sutcliffe IC, Harrington DJ (2009) Expression of the MtsA lipoprotein of Streptococcus agalactiae A909 is regulated by manganese and iron. Antonie Van Leeuwenhoek 95:101–109PubMedGoogle Scholar
  22. Brown JS, Gilliland SM, Holden DW (2001) A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol Microbiol 40:572–585PubMedGoogle Scholar
  23. Burnette-Curley D, Wells V, Viscount H, Munro CL, Fenno JC, Fives-Taylor P, Macrina FL (1995) FimA, a major virulence factor associated with Streptococcus parasanguis endocarditis. Infect Immun 63:4669–4674PubMedCentralPubMedGoogle Scholar
  24. Carlsson J, Edlund M-BK (1987) Pyruvate oxidase in Streptococcus sanguis under various growth conditions. Oral Microbiol Immunol 2:10–14PubMedGoogle Scholar
  25. Chao TC, Becker A, Buhrmester J, Puhler A, Weidner S (2004) The Sinorhizobium meliloti fur gene regulates, with dependence on Mn(II), transcription of the sitABCD operon, encoding a metal-type transporter. J Bacteriol 186:3609–3620PubMedCentralPubMedGoogle Scholar
  26. Cheng W, Li Q, Jiang YL, Zhou CZ, Chen Y (2013) Structures of Streptococcus pneumoniae PiaA and its complex with ferrichrome reveal insights into the substrate binding and release of high affinity iron transporters. PLoS ONE 8:e71451PubMedCentralPubMedGoogle Scholar
  27. Cockayne A, Hill PJ, Powell NB, Bishop K, Sims C, Williams P (1998) Molecular cloning of a 32-kilodalton lipoprotein component of a novel iron-regulated Staphylococcus epidermidis ABC transporter. Infect Immun 66:3767–3774PubMedCentralPubMedGoogle Scholar
  28. Couñago RM et al (2014) Imperfect coordination chemistry facilitates metal ion release in the Psa permease. Nat Chem Biol 10:35–41PubMedGoogle Scholar
  29. Crump KE et al (2014) The relationship of the lipoprotein SsaB, manganese and superoxide dismutase in Streptococcus sanguinis virulence for endocarditis. Mol Microbiol 92:1243–1259PubMedGoogle Scholar
  30. Dahiya I, Stevenson RM (2010) The ZnuABC operon is important for Yersinia ruckeri infections of rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 33:331–340PubMedGoogle Scholar
  31. Daly MJ (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Micro 7:237–245Google Scholar
  32. Daly MJ et al (2010) Small-molecule antioxidant proteome-shields in Deinococcus radiodurans. PLoS One 5:e12570PubMedCentralPubMedGoogle Scholar
  33. Damo SM et al (2013) Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens. Proc Natl Acad Sci USA 110:3841–3846PubMedCentralPubMedGoogle Scholar
  34. Das S, Kanamoto T, Ge X, Xu P, Unoki T, Munro CL, Kitten T (2009) Contribution of lipoproteins and lipoprotein processing to endocarditis virulence in Streptococcus sanguinis. J Bacteriol 191:4166–4179PubMedCentralPubMedGoogle Scholar
  35. Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364PubMedCentralPubMedGoogle Scholar
  36. Davies BW, Walker GC (2007) Disruption of sitA compromises Sinorhizobium meliloti for manganese uptake required for protection against oxidative stress. J Bacteriol 189:2101–2109PubMedCentralPubMedGoogle Scholar
  37. Davis LM, Kakuda T, DiRita VJ (2009) A Campylobacter jejuni ZnuA orthologue is essential for growth in low-zinc environments and chick colonization. J Bacteriol 191:1631–1640PubMedCentralPubMedGoogle Scholar
  38. De Vendittis A et al (2010) Regulation of the properties of superoxide dismutase from the dental pathogenic microorganism Streptococcus mutans by iron- and manganese-bound co-factor. Mol BioSyst 6:1973–1982PubMedGoogle Scholar
  39. De Vendittis A et al (2012) Properties of a putative cambialistic superoxide dismutase from the aerotolerant bacterium Streptococcus thermophilus strain LMG 18311. Protein Pept Lett 19:333–344PubMedGoogle Scholar
  40. Deka RK et al (1999) Physicochemical evidence that Treponema pallidum TroA is a zinc-containing metalloprotein that lacks porin-like structure. J Bacteriol 181:4420–4423PubMedCentralPubMedGoogle Scholar
  41. Desrosiers DC, Sun YC, Zaidi AA, Eggers CH, Cox DL, Radolf JD (2007) The general transition metal (Tro) and Zn2+ (Znu) transporters in Treponema pallidum: analysis of metal specificities and expression profiles. Mol Microbiol 65:137–152PubMedGoogle Scholar
  42. Diep BA et al (2014) Identifying potential therapeutic targets of methicillin-resistant Staphylococcus aureus through in vivo proteomic analysis. J Infect Dis 209:1533–1541PubMedGoogle Scholar
  43. Dintilhac A, Claverys JP (1997) The adc locus, which affects competence for genetic transformation in Streptococcus pneumoniae, encodes an ABC transporter with a putative lipoprotein homologous to a family of streptococcal adhesins. Res Microbiol 148:119–131PubMedGoogle Scholar
  44. Dintilhac A, Alloing G, Granadel C, Claverys JP (1997) Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol Microbiol 25:727–739PubMedGoogle Scholar
  45. Eijkelkamp BA, Morey JR, Ween MP, Ong C-lY, McEwan AG, Paton JC, McDevitt CA (2014) Extracellular zinc competitively inhibits manganese uptake and compromises oxidative stress management in Streptococcus pneumoniae. PLoS One 9:e89427PubMedCentralPubMedGoogle Scholar
  46. Falconi M, Oteri F, Di Palma F, Pandey S, Battistoni A, Desideri A (2011) Structural-dynamical investigation of the ZnuA histidine-rich loop: involvement in zinc management and transport. J Comput Aided Mol Des 25:181–194PubMedGoogle Scholar
  47. Fenno JC, LeBlanc DJ, Fives-Taylor P (1989) Nucleotide sequence analysis of a type 1 fimbrial gene of Streptococcus sanguis FW213. Infect Immun 57:3527–3533PubMedCentralPubMedGoogle Scholar
  48. Froeliger EH, Fives-Taylor P (2000) Streptococcus parasanguis FimA does not contribute to adherence to SHA (abstract 1552). J Dent Res 79:337Google Scholar
  49. Gaballa A, Helmann JD (1998) Identification of a zinc-specific metalloregulatory protein Zur, controlling zinc transport operons in Bacillus subtilis. J Bacteriol 180:5815–5821PubMedCentralPubMedGoogle Scholar
  50. Gaballa A, Wang T, Ye RW, Helmann JD (2002) Functional analysis of the Bacillus subtilis Zur regulon. J Bacteriol 184:6508–6514PubMedCentralPubMedGoogle Scholar
  51. Ganeshkumar N, Song M, McBride BC (1988) Cloning of a Streptococcus sanguis adhesin which mediates binding to saliva-coated hydroxyapatite. Infect Immun 56:1150–1157PubMedCentralPubMedGoogle Scholar
  52. Gat O et al (2005) The solute-binding component of a putative Mn(II) ABC transporter (MntA) is a novel Bacillus anthracis virulence determinant. Mol Microbiol 58:533–551PubMedGoogle Scholar
  53. Gibson CM, Caparon MG (1996) Insertional inactivation of Streptococcus pyogenes sod suggests that prtF is regulated in response to a superoxide signal. J Bacteriol 178:4688–4695PubMedCentralPubMedGoogle Scholar
  54. Gon S, Beckwith J (2006) Ribonucleotide reductases: influence of environment on synthesis and activity. Antioxid Redox Signal 8:773–780PubMedGoogle Scholar
  55. Gribenko A et al (2013) Three-dimensional structure and biophysical characterization of Staphylococcus aureus cell surface antigen-manganese transporter MntC. J Mol Biol 425:3429–3445PubMedGoogle Scholar
  56. Groot MN, Klaassens E, de Vos WM, Delcour J, Hols P, Kleerebezem M (2005) Genome-based in silico detection of putative manganese transport systems in Lactobacillus plantarum and their genetic analysis. Microbiology 151:1229–1238PubMedGoogle Scholar
  57. Hanks TS, Liu M, McClure MJ, Fukumura M, Duffy A, Lei B (2006) Differential regulation of iron- and manganese-specific MtsABC and heme-specific HtsABC transporters by the metalloregulator MtsR of group A Streptococcus. Infect Immun 74:5132–5139PubMedCentralPubMedGoogle Scholar
  58. Hao Z, Chen S, Wilson DB (1999) Cloning, expression, and characterization of cadmium and manganese uptake genes from Lactobacillus plantarum. Appl Environ Microbiol 65:4746–4752PubMedCentralPubMedGoogle Scholar
  59. Hazlett KR et al (2003) The Treponema pallidum tro operon encodes a multiple metal transporter, a zinc-dependent transcriptional repressor, and a semi-autonomously expressed phosphoglycerate mutase. J Biol Chem 278:20687–20694PubMedGoogle Scholar
  60. Hendriksen WT, Bootsma HJ, van Diepen A, Estevao S, Kuipers OP, de Groot R, Hermans PWM (2009) Strain-specific impact of PsaR of Streptococcus pneumoniae on global gene expression and virulence. Microbiology 155:1569–1579PubMedGoogle Scholar
  61. Horsburgh MJ, Wharton SJ, Cox AG, Ingham E, Peacock S, Foster SJ (2002a) MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Mol Microbiol 44:1269–1286PubMedGoogle Scholar
  62. Horsburgh MJ, Wharton SJ, Karavolos M, Foster SJ (2002b) Manganese: elemental defence for a life with oxygen. Trends Microbiol 10:496–501PubMedGoogle Scholar
  63. Ilari A, Alaleona F, Petrarca P, Battistoni A, Chiancone E (2011) The X-ray structure of the zinc transporter ZnuA from Salmonella enterica discloses a unique triad of zinc-coordinating histidines. J Mol Biol 409:630–641PubMedGoogle Scholar
  64. Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776PubMedCentralPubMedGoogle Scholar
  65. Jakubovics NS, Jenkinson HF (2001) Out of the iron age: new insights into the critical role of manganese homeostasis in bacteria. Microbiology 147:1709–1718PubMedGoogle Scholar
  66. Jakubovics NS, Smith AW, Jenkinson HF (2000) Expression of the virulence-related Sca (Mn2+) permease in Streptococcus gordonii is regulated by a diphtheria toxin metallorepressor-like protein ScaR. Mol Microbiol 38:140–153PubMedGoogle Scholar
  67. Jakubovics NS, Smith AW, Jenkinson HF (2002) Oxidative stress tolerance is manganese (Mn2+) regulated in Streptococcus gordonii. Microbiology 148:3255–3263PubMedGoogle Scholar
  68. Janulczyk R, Pallon J, Bjorck L (1999) Identification and characterization of a Streptococcus pyogenes ABC transporter with multiple specificity for metal cations. Mol Microbiol 34:596–606PubMedGoogle Scholar
  69. Janulczyk R, Ricci S, Bjorck L (2003) MtsABC is important for manganese and iron transport, oxidative stress resistance, and virulence of Streptococcus pyogenes. Infect Immun 71:2656–2664PubMedCentralPubMedGoogle Scholar
  70. Jenkinson HF (1994) Cell surface protein receptors in oral streptococci. FEMS Microbiol Lett 121:133–140PubMedGoogle Scholar
  71. Johnston JW, Myers LE, Ochs MM, Benjamin WH Jr, Briles DE, Hollingshead SK (2004) Lipoprotein PsaA in virulence of Streptococcus pneumoniae: surface accessibility and role in protection from superoxide. Infect Immun 72:5858–5867PubMedCentralPubMedGoogle Scholar
  72. Johnston JW, Briles DE, Myers LE, Hollingshead SK (2006) Mn2+-dependent regulation of multiple genes in Streptococcus pneumoniae through PsaR and the resultant impact on virulence. Infect Immun 74:1171–1180PubMedCentralPubMedGoogle Scholar
  73. Kehl-Fie TE et al (2013) MntABC and MntH contribute to systemic Staphylococcus aureus infection by competing with calprotectin for nutrient manganese. Infect Immun 81:3395–3405PubMedCentralPubMedGoogle Scholar
  74. Kehres DG, Maguire ME (2003) Emerging themes in manganese transport, biochemistry and pathogenesis in bacteria. FEMS Microbiol Rev 27:263–290PubMedGoogle Scholar
  75. Kim JN, Ahn S-J, Seaton K, Garrett S, Burne RA (2012) Transcriptional organization and physiological contributions of the relQ operon of Streptococcus mutans. J Bacteriol 194:1968–1978PubMedCentralPubMedGoogle Scholar
  76. Kitten T, Munro CL, Michalek SM, Macrina FL (2000) Genetic characterization of a Streptococcus mutans LraI family operon and role in virulence. Infect Immun 68:4441–4451PubMedCentralPubMedGoogle Scholar
  77. Kloosterman TG, Witwicki RM, van der Kooi-Pol MM, Bijlsma JJE, Kuipers OP (2008) Opposite effects of Mn2+ and Zn2+ on PsaR-mediated expression of the virulence genes pcpA, prtA, and psaBCA of Streptococcus pneumoniae. J Bacteriol 190:5382–5393PubMedCentralPubMedGoogle Scholar
  78. Kolenbrander PE, Andersen RN (1990) Characterization of Streptococcus gordonii (S. sanguis) PK488 adhesin- mediated coaggregation with Actinomyces naeslundii PK606. Infect Immun 58:3064–3072PubMedCentralPubMedGoogle Scholar
  79. Kolenbrander PE, Andersen RN, Baker RA, Jenkinson HF (1998) The adhesion-associated sca operon in Streptococcus gordonii encodes an inducible high-affinity ABC transporter for Mn2+ uptake. J Bacteriol 180:290–295PubMedCentralPubMedGoogle Scholar
  80. Krishna CM et al (1992) The catecholic metal sequestering agent 1,2-dihydroxybenzene-3,5-disulfonate confers protection against oxidative cell damage. Arch Biochem Biophys 294:98–106PubMedGoogle Scholar
  81. Lawrence MC, Pilling PA, Epa VC, Berry AM, Ogunniyi AD, Paton JC (1998) The crystal structure of pneumococcal surface antigen PsaA reveals a metal-binding site and a novel structure for a putative ABC-type binding protein. Structure 6:1553–1561PubMedGoogle Scholar
  82. Lee YH, Deka RK, Norgard MV, Radolf JD, Hasemann CA (1999) Treponema pallidum TroA is a periplasmic zinc-binding protein with a helical backbone. Nat Struct Biol 6:628–633PubMedGoogle Scholar
  83. Lee YH, Dorwart MR, Hazlett KR, Deka RK, Norgard MV, Radolf JD, Hasemann CA (2002) The crystal structure of Zn(II)-free Treponema pallidum TroA, a periplasmic metal-binding protein, reveals a closed conformation. J Bacteriol 184:2300–2304PubMedCentralPubMedGoogle Scholar
  84. Lim KH et al (2008) Metal binding specificity of the MntABC permease of Neisseria gonorrhoeae and its influence on bacterial growth and interaction with cervical epithelial cells. Infect Immun 76:3569–3576PubMedCentralPubMedGoogle Scholar
  85. Linke C, Caradoc-Davies TT, Proft T, Baker EN (2008) Purification, crystallization and preliminary crystallographic analysis of Streptococcus pyogenes laminin-binding protein Lbp. Acta Crystallogr Sect F 64:141–143Google Scholar
  86. Linke C, Caradoc-Davies TT, Young PG, Proft T, Baker EN (2009) The laminin-binding protein Lbp from Streptococcus pyogenes is a zinc receptor. J Bacteriol 191:5814–5823PubMedCentralPubMedGoogle Scholar
  87. Lisher JP, Giedroc DP (2013) Manganese acquisition and homeostasis at the host-pathogen interface. Front Cell Infect Microbiol 3:91. doi: 10.3389/fcimb.2013.00091 PubMedCentralPubMedGoogle Scholar
  88. Locher KP (2009) Review. Structure and mechanism of ATP-binding cassette transporters. Philos Trans R Soc Lond B 364:239–245Google Scholar
  89. Loisel E et al (2008) AdcAII, a new pneumococcal Zn-binding protein homologous with ABC transporters: biochemical and structural analysis. J Mol Biol 381:594–606PubMedGoogle Scholar
  90. Lu D, Boyd B, Lingwood CA (1997) Identification of the key protein for zinc uptake in Hemophilus influenzae. J Biol Chem 272:29033–29038PubMedGoogle Scholar
  91. Makhlynets O, Boal AK, Rhodes DV, Kitten T, Rosenzweig AC, Stubbe J (2014) Streptococcus sanguinis class Ib ribonucleotide reductase: high activity with both iron and manganese cofactors and structural insights. J Biol Chem 289:6259–6272PubMedCentralPubMedGoogle Scholar
  92. Marra A, Lawson S, Asundi JS, Brigham D, Hromockyj AE (2002) In vivo characterization of the psa genes from Streptococcus pneumoniae in multiple models of infection. Microbiology 148:1483–1491PubMedGoogle Scholar
  93. Massonet C, Pintens V, Merckx R, Anne J, Lammertyn E, Van Eldere J (2006) Effect of iron on the expression of sirR and sitABC in biofilm-associated Staphylococcus epidermidis. BMC Microbiol 6:103PubMedCentralPubMedGoogle Scholar
  94. McAllister LJ, Tseng HJ, Ogunniyi AD, Jennings MP, McEwan AG, Paton JC (2004) Molecular analysis of the psa permease complex of Streptococcus pneumoniae. Mol Microbiol 53:889–901PubMedGoogle Scholar
  95. McDevitt CA, Ogunniyi AD, Valkov E, Lawrence MC, Kobe B, McEwan AG, Paton JC (2011) A molecular mechanism for bacterial susceptibility to zinc. PLoS Pathog 7:e1002357PubMedCentralPubMedGoogle Scholar
  96. Mechold U, Murphy H, Brown L, Cashel M (2002) Intramolecular regulation of the opposing (p)ppGpp catalytic activities of Rel(Seq), the Rel/Spo enzyme from Streptococcus equisimilis. J Bacteriol 184:2878–2888PubMedCentralPubMedGoogle Scholar
  97. Merchant AT, Spatafora GA (2014) A role for the DtxR family of metalloregulators in gram-positive pathogenesis. Mol Oral Microbiol 29:1–10PubMedCentralPubMedGoogle Scholar
  98. Miller JD, Sal MS, Schell M, Whittimore JD, Raulston JE (2009) Chlamydia trachomatis YtgA is an iron-binding periplasmic protein induced by iron restriction. Microbiology 155:2884–2894PubMedCentralPubMedGoogle Scholar
  99. Nakayama K (1992) Nucleotide sequence of Streptococcus mutans superoxide dismutase gene and isolation of insertion mutants. J Bacteriol 174:4928–4934PubMedCentralPubMedGoogle Scholar
  100. Oetjen J, Fives-Taylor P, Froeliger EH (2002) The divergently transcribed Streptococcus parasanguis virulence-associated fimA operon encoding an Mn(2+)-responsive metal transporter and pepO encoding a zinc metallopeptidase are not coordinately regulated. Infect Immun 70:5706–5714PubMedCentralPubMedGoogle Scholar
  101. Ogunniyi AD et al (2010) Central role of manganese in regulation of stress responses, physiology, and metabolism in Streptococcus pneumoniae. J Bacteriol 192:4489–4497PubMedCentralPubMedGoogle Scholar
  102. Oligino L, Fives-Taylor P (1993) Overexpression and purification of a fimbria-associated adhesin of Streptococcus parasanguis. Infect Immun 61:1016–1022PubMedCentralPubMedGoogle Scholar
  103. Paik S, Brown A, Munro CL, Cornelissen CN, Kitten T (2003) The sloABCR operon of Streptococcus mutans encodes an Mn and Fe transport system required for endocarditis virulence and its Mn-dependent repressor. J Bacteriol 185:5967–5975PubMedCentralPubMedGoogle Scholar
  104. Papp-Wallace KM, Maguire ME (2006) Manganese transport and the role of manganese in virulence. Annu Rev Microbiol 60:187–209PubMedGoogle Scholar
  105. Parfenyev AN, Salminen A, Halonen P, Hachimori A, Baykov AA, Lahti R (2001) Quaternary structure and metal ion requirement of family II pyrophosphatases from Bacillus subtilis, Streptococcus gordonii, and Streptococcus mutans. J Biol Chem 276:24511–24518PubMedGoogle Scholar
  106. Patzer SI, Hantke K (1998) The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 28:1199–1210PubMedGoogle Scholar
  107. Platero R, Peixoto L, O’Brian MR, Fabiano E (2004) Fur is involved in manganese-dependent regulation of mntA (sitA) expression in Sinorhizobium meliloti. Appl Environ Microbiol 70:4349–4355PubMedCentralPubMedGoogle Scholar
  108. Plumptre CD et al (2014) AdcA and AdcAII employ distinct zinc acquisition mechanisms and contribute additively to zinc homeostasis in Streptococcus pneumoniae. Mol Microbiol 91:834–851PubMedGoogle Scholar
  109. Porter EV, Chassy BM, Holmlund CE (1982) Purification and kinetic characterization of a specific glucokinase from Streptococcus mutans OMZ70 cells. Biochim Biophys Acta 709:178–186PubMedGoogle Scholar
  110. Poyart C, Pellegrini E, Gaillot O, Boumaila C, Baptista M, Trieu-Cuot P (2001) Contribution of Mn-cofactored superoxide dismutase (SodA) to the virulence of Streptococcus agalactiae. Infect Immun 69:5098–5106PubMedCentralPubMedGoogle Scholar
  111. Ragunathan P, Spellerberg B, Ponnuraj K (2009a) Expression, purification, crystallization and preliminary crystallographic analysis of laminin-binding protein (Lmb) from Streptococcus agalactiae. Acta Crystallogr Sect F 65:492–494Google Scholar
  112. Ragunathan P, Spellerberg B, Ponnuraj K (2009b) Structure of laminin-binding adhesin (Lmb) from Streptococcus agalactiae. Acta Crystallogr D 65:1262–1269PubMedGoogle Scholar
  113. Rajam G, Anderton JM, Carlone GM, Sampson JS, Ades EW (2008) Pneumococcal surface adhesin A (PsaA): a review. Crit Rev Microbiol 34:131–142PubMedGoogle Scholar
  114. Rantanen MK, Lehtiö L, Rajagopal L, Rubens CE, Goldman A (2007) Structure of the Streptococcus agalactiae family II inorganic pyrophosphatase at 2.80 Å resolution. Acta Crystallogr Sect D 63:738–743Google Scholar
  115. Rhodes DV et al (2014) Genetic characterization and role in virulence of the ribonucleotide reductases of Streptococcus sanguinis. J Biol Chem 289:6273–6287PubMedCentralPubMedGoogle Scholar
  116. Rolerson E, Swick A, Newlon L, Palmer C, Pan Y, Keeshan B, Spatafora G (2006) The SloR/Dlg metalloregulator modulates Streptococcus mutans virulence gene expression. J Bacteriol 188:5033–5044PubMedCentralPubMedGoogle Scholar
  117. Sabri M, Leveille S, Dozois CM (2006) A SitABCD homologue from an avian pathogenic Escherichia coli strain mediates transport of iron and manganese and resistance to hydrogen peroxide. Microbiology 152:745–758PubMedGoogle Scholar
  118. Seki M, Iida K-i, Saito M, Nakayama H, Yoshida S-i (2004) Hydrogen peroxide production in Streptococcus pyogenes: involvement of lactate oxidase and coupling with aerobic utilization of lactate. J Bacteriol 186:2046–2051PubMedCentralPubMedGoogle Scholar
  119. Smith AJ, Ward PN, Field TR, Jones CL, Lincoln RA, Leigh JA (2003) MtuA, a lipoprotein receptor antigen from Streptococcus uberis, is responsible for acquisition of manganese during growth in milk and is essential for infection of the lactating bovine mammary gland. Infect Immun 71:4842–4849PubMedCentralPubMedGoogle Scholar
  120. Sobota JM, Gu M, Imlay JA (2014) Intracellular hydrogen peroxide and superoxide poison 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase, the first committed enzyme in the aromatic biosynthetic pathway of Escherichia coli. J Bacteriol 196:1980–1991PubMedCentralPubMedGoogle Scholar
  121. Sobota JM, Imlay JA (2011) Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide but can be protected by manganese. Proc Natl Acad Sci USA 108:5402–5407PubMedCentralPubMedGoogle Scholar
  122. Spellerberg B, Cundell DR, Sandros J, Pearce BJ, Idanpaan-Heikkila I, Rosenow C, Masure HR (1996) Pyruvate oxidase, as a determinant of virulence in Streptococcus pneumoniae. Mol Microbiol 19:803–813PubMedGoogle Scholar
  123. Stubbe J, Cotruvo JA Jr (2011) Control of metallation and active cofactor assembly in the class Ia and Ib ribonucleotide reductases: diiron or dimanganese? Curr Opin Chem Biol. doi: 10.1016/j.cbpa.2010.12.001 PubMedCentralPubMedGoogle Scholar
  124. Sun X, Baker HM, Ge R, Sun H, He QY, Baker EN (2009) Crystal structure and metal binding properties of the lipoprotein MtsA, responsible for iron transport in Streptococcus pyogenes. Biochemistry 48:6184–6190PubMedGoogle Scholar
  125. Sun X, Ge R, Chiu JF, Sun H, He QY (2008) Lipoprotein MtsA of MtsABC in Streptococcus pyogenes primarily binds ferrous ion with bicarbonate as a synergistic anion. FEBS Lett 582:1351–1354PubMedGoogle Scholar
  126. Taniai H, Iida K, Seki M, Saito M, Shiota S, Nakayama H, Yoshida S (2008) Concerted action of lactate oxidase and pyruvate oxidase in aerobic growth of Streptococcus pneumoniae: role of lactate as an energy source. J Bacteriol 190:3572–3579PubMedCentralPubMedGoogle Scholar
  127. Thanassi JA, Hartman-Neumann SL, Dougherty TJ, Dougherty BA, Pucci MJ (2002) Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res 30:3152–3162PubMedCentralPubMedGoogle Scholar
  128. Thompson CC, Nicod SS, Malcolm DS, Grieshaber SS, Carabeo RA (2012) Cleavage of a putative metal permease in Chlamydia trachomatis yields an iron-dependent transcriptional repressor. Proc Natl Acad Sci USA 109:10546–10551PubMedCentralPubMedGoogle Scholar
  129. Tseng HJ, McEwan AG, Paton JC, Jennings MP (2002) Virulence of Streptococcus pneumoniae: PsaA mutants are hypersensitive to oxidative stress. Infect Immun 70:1635–1639PubMedCentralPubMedGoogle Scholar
  130. Wichgers Schreur PJ, Rebel JM, Smits MA, van Putten JP, Smith HE (2011) TroA of Streptococcus suis is required for manganese acquisition and full virulence. J Bacteriol 193:5073–5080PubMedGoogle Scholar
  131. Xu P et al (2011) Genome-wide essential gene identification in Streptococcus sanguinis. Sci Rep 1:125PubMedCentralPubMedGoogle Scholar
  132. Yamamoto Y, Poole LB, Hantgan RR, Kamio Y (2002) An iron-binding protein, Dpr, from Streptococcus mutans prevents iron-dependent hydroxyl radical formation in vitro. J Bacteriol 184:2931–2939PubMedCentralPubMedGoogle Scholar
  133. Yesilkaya H, Kadioglu A, Gingles N, Alexander JE, Mitchell TJ, Andrew PW (2000) Role of manganese-containing superoxide dismutase in oxidative stress and virulence of Streptococcus pneumoniae. Infect Immun 68:2819–2826PubMedCentralPubMedGoogle Scholar
  134. Zheng B et al (2011) Insight into the interaction of metal ions with TroA from Streptococcus suis. PLoS One 6:e19510PubMedCentralPubMedGoogle Scholar
  135. Zhou D, Hardt WD, Galan JE (1999) Salmonella typhimurium encodes a putative iron transport system within the centisome 63 pathogenicity island. Infect Immun 67:1974–1981PubMedCentralPubMedGoogle Scholar
  136. Zou L, Wang J, Huang B, Xie M, Li A (2010) A solute-binding protein for iron transport in Streptococcus iniae. BMC Microbiol 10:309PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Research Centre for Infectious Diseases, School of Molecular and Biomedical ScienceUniversity of AdelaideAdelaideAustralia
  2. 2.Philips Institute for Oral Health Research and Department of Microbiology & ImmunologyVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations