, Volume 27, Issue 6, pp 1371–1382 | Cite as

In vitro heme and non-heme iron capture from hemoglobin, myoglobin and ferritin by bovine lactoferrin and implications for suppression of reactive oxygen species in vivo

  • Hemalatha Jegasothy
  • Rangika Weerakkody
  • Sophie Selby-Pham
  • Louise E. BennettEmail author


Lactoferrin (Lf), present in colostrum and milk is a member of the transferrin family of iron-binding glyco-proteins, with stronger binding capacity to ferric iron than hemoglobin, myoglobin or transferrin. Unlike hemoglobin and myoglobin, iron-bound Lf is reasonably stable to gastric and duodenal digestive conditions. Unlike ferrous iron, ferric iron is not directly reactive with oxygen supporting the capacity of Lf capture of heme iron to suppress reactive oxygen species (ROS) production. We therefore hypothesized that bovine Lf could capture and thereby terminate the cycle of ROS production by heme iron. The transfer of heme iron from either intact or digested forms of hemoglobin and myoglobin and from intact ferritin was demonstrated by in vitro methods, monitoring Fe-saturation status of Lf by changes in absorptivity at 465 nm. The results are discussed in the context of new proposed opportunities for orally administered Lf to regulate oxidative damage associated with heme iron. In addition to potentially suppressing oxidative heme–iron-mediated tissue damage in the lumen, Lf is expected to also reverse the overload of ferritin-bound iron, that accompanies chronic inflammation and aging. These new proposed uses of Lf are additional to known host defense functions that include anti-microbial, anti-viral properties, immune and cancer cell growth regulation. The findings and interpretations presented require clinical substantiation and may support important additional protective and therapeutic uses for Lf in the future.


Lactoferrin Iron Heme Non-heme Reactive oxygen species Anti-oxidant  Digestion Oxidative stress 









Heme oxygenase



This work was conducted with support from the CSIRO Preventative Health National Research Flagship. Minerals analysis by Richard Phillips is also gratefully acknowledged.


  1. Adlerova L, Bartoskova A, Faldyna M (2008) Lactoferrin: a review. Veterinarni Medicina 53:457–468Google Scholar
  2. Aruoma OI, Halliwell B, Gajewski E, Dizdaroglu M (1989) Damage to the bases in DNA induced by hydrogen peroxide and ferric ion chelates. J Biol Chem 264:20509–20512PubMedGoogle Scholar
  3. Baker EN et al. (1994) 3-dimensional structure of lactoferrin in various functional states In: Hutchens TW, Rumball SV, Lonnerdal B (eds) Lactoferrin: Structure and Function, vol 357. Advances in Experimental Medicine and Biology. pp 1–12Google Scholar
  4. Baker EN, Rumball SV, Anderson BF (1987) Transferrins: insights into structure and function from studies on lactoferrin. Trends Biochem Sci 12:350–353CrossRefGoogle Scholar
  5. Balder HF et al (2006) Heme and chlorophyll intake and risk of colorectal cancer in the Netherlands Cohort Study. Cancer Epidemiol Biomark Prev 15:717–725. doi: 10.1158/1055-9965.ep1-05-0772 CrossRefGoogle Scholar
  6. Bandyopadhyay S, Cahill C, Balleidier A, Huang CN, Lahiri DK, Huang XD, Rogers JT (2013) Novel 5′ untranslated region directed blockers of iron-regulatory protein-1 dependent amyloid precursor protein translation: implications for down syndrome and Alzheimer’s disease. PLoS One. doi: 10.1371/journal.pone.0065978 Google Scholar
  7. Bao W, Rong Y, Rong S, Liu LG (2012) Dietary iron intake, body iron stores, and the risk of type 2 diabetes: a systematic review and meta-analysis. BMC Med. doi: 10.1186/1741-7015-10-119 PubMedCentralPubMedGoogle Scholar
  8. Bastide NM, Pierre FHF, Corpet DE (2011) Heme iron from meat and risk of colorectal cancer: A meta-analysis and a review of the mechanisms involved cancer prevention research 4:177–184. doi: 10.1158/1940-6207.capr-10-0113 Google Scholar
  9. Benito P, Miller D (1998) Iron absorption and bioavailability: an updated review. Nutr Res 18:581–603. doi: 10.1016/s0271-5317(98)00044-x CrossRefGoogle Scholar
  10. Brines RD, Brock JH (1983) The effect of trypsin and chymotrypsin on the in vitro anti-microbial and iron-binding properties of lactoferrin in human milk and bovine colostrum—unusual resistance of human apo-lactoferrin to proteolytic digestion Biochimica Et Biophysica Acta 759:229–235. doi: 10.1016/0304-4165(83)90317-3 Google Scholar
  11. Cairo G, Bernuzzi F, Recalcati S (2006) A precious metal: Iron, an essential nutrient for all cells. Genes Nutr 1:25–39. doi: 10.1007/bf02829934 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Connor JR, Menzies SL, Stmartin SM, Mufson EJ (1992) A histochemical study of iron, transferrin and ferritin in Alzheimer’s diseased brains. J Neurosci Res 31:75–83. doi: 10.1002/jnr.490310111 PubMedCrossRefGoogle Scholar
  13. Corpet DE (2011) Red meat and colon cancer: should we become vegetarians, or can we make meat safer? Meat Sci 89:310–316. doi: 10.1016/j.meatsci.2011.04.009 PubMedCrossRefGoogle Scholar
  14. Dionysius DA, Grieve PA, Milne JM (1993) Forms of lactoferrin—their anti-bacterial effect on enterotoxigenic Escherichia coli. J Dairy Sci 76:2597–2606PubMedCrossRefGoogle Scholar
  15. Fasano M, Fanali G, Polticelli F, Ascenzi P, Antonini G (2004) H-1 NMR relaxometric characterization of bovine lactoferrin. J Inorg Biochem 98:1421–1426Google Scholar
  16. Faux NG et al (2014) An anemia of Alzheimer’s disease. Mol Psychiatry. doi: 10.1038/mp.2013.178 Google Scholar
  17. Furlund CB, Kristoffersen AB, Devold TG, Vegarud GE, Jonassen CM (2012) Bovine lactoferrin digested with human gastrointestinal enzymes inhibits replication of human echovirus 5 in cell culture. Nutr Res 32:503–513. doi: 10.1016/j.nutres.2012.06.006 PubMedCrossRefGoogle Scholar
  18. Furlund CB et al (2013) Identification of lactoferrin peptides generated by digestion with human gastrointestinal enzymes. J Dairy Sci 96:75–88. doi: 10.3168/jds.2012-5946 PubMedCrossRefGoogle Scholar
  19. Garcia MN, MartinezTorres C, Leets I, Tropper E, Ramirez J, Layrisse M (1996) Heat treatment on heme iron and iron-containing proteins in meat: iron absorption in humans from diets containing cooked meat fractions. J Nutr Biochem 7:49–54. doi: 10.1016/0955-2863(95)00166-2 CrossRefGoogle Scholar
  20. Glei M, Latunde-Dada GO, Klinder A, Becker TW, Hermann U, Voigt K, Pool-Zobel BL (2002) Iron-overload induces oxidative DNA damage in the human colon carcinoma cell line HT29 clone 19A. Mutat Res/Genet Toxicol Environ Mutagen 519:151–161. doi: 10.1016/s1383-5718(02)00135-3 CrossRefGoogle Scholar
  21. Imlay J, Chin S, Linn S (1988) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240:640–642. doi: 10.1126/science.2834821 PubMedCrossRefGoogle Scholar
  22. Latunde-Dada GO, Dutra de Oliveira JE, Carillo SV, Marchini SJ, Bianchi MLP (1998) Gastro-intestinal tract and iron absorption: a review Alimentary, Nutrition 9:103–125Google Scholar
  23. Levay PF, Viljoen M (1995) Lactoferrin—a general review. Haematologica 80:252–267PubMedGoogle Scholar
  24. Loef M, Walach H (2012) Copper and iron in Alzheimer’s disease: a systematic review and its dietary implications. Br J Nutr 107:7–19. doi: 10.1017/s000711451100376x PubMedCrossRefGoogle Scholar
  25. Lonnerdal B (2010) Alternative pathways for absorption of iron from foods. Pure Appl Chem 82:429–436. doi: 10.1351/pac-con-09-06-04 CrossRefGoogle Scholar
  26. Lonnerdal B, Bryant A (2006) Absorption of iron from recombinant human lactoferrin in young US women. Am J Clin Nutr 83:305–309PubMedGoogle Scholar
  27. Lonnerdal B, Iyer S (1995) Lactoferrin - molecular structure and biological function. Annu Rev Nutr 15:93–110. doi: 10.1146/annurev.nutr.15.1.93 PubMedCrossRefGoogle Scholar
  28. Mandalari G et al (2009) In vitro digestibility of beta-casein and beta-lactoglobulin under simulated human gastric and duodenal conditions: a multi-laboratory evaluation. Regul Toxicol Pharmacol 55:372–381. doi: 10.1016/j.yrtph.2009.08.010 PubMedCrossRefGoogle Scholar
  29. Mazurier J, Spik G (1980) Comparative study of the iron-binding properties of human transferrins: I. Complete and sequential iron saturation and desaturation of the lactotransferrin Biochimica et Biophysica Acta (BBA)—General Subjects 629:399–408 doi: 10.1016/0304-4165(80)90112-9
  30. Motouri M et al (2007) Effect of iron solubilized by lactoferrin on iron status in adult women. J Japan Soc Food Sci Technology-Nippon Shokuhin Kagaku Kogaku Kaishi 54:442–446CrossRefGoogle Scholar
  31. Nagababu E, Rifkind JM (2004) Heme degradation by reactive oxygen species. Antioxid Redox Signal 6:967–978. doi: 10.1089/1523086042259823 PubMedCrossRefGoogle Scholar
  32. O’Callaghan NJ, Toden S, Bird AR, Topping DL, Fenech M, Conlon MA (2012) Colonocyte telomere shortening is greater with dietary red meat than white meat and is attenuated by resistant starch. Clin Nutr 31:60–64. doi: 10.1016/j.clnu.2011.09.003 PubMedCrossRefGoogle Scholar
  33. Perron N, Brumaghim J (2009) A review of the antioxidant mechanisms of polyphenol compounds related to iron binding Cell Biochemistry and Biophysics 53:75–100. doi: 10.1007/s12013-009-9043-x Google Scholar
  34. Pierre F, Santarelli R, Tache S, Gueraud F, Corpet DE (2008) Beef meat promotion of dimethylhydrazine-induced colorectal carcinogenesis biomarkers is suppressed by dietary calcium. Br J Nutr 99:1000–1006. doi: 10.1017/s0007114507843558 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Raffin SB, Woo CH, Roost KT, Price DC, Schmid R (1974) Intestinal absorption of hemoglobin iron-heme cleavage by mucosal heme oxygenase. J Clin Invest 54:1344–1352. doi: 10.1172/jci107881 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Reeder BJ, Svistunenko DA, Cooper CE, Wilson MT (2004) The radical and redox chemistry of myoglobin and hemoglobin: from in vitro studies to human pathology. Antioxid Redox Signal 6:954–966. doi: 10.1089/1523086042259832 PubMedCrossRefGoogle Scholar
  37. Reeder BJ, Hider RC, Wilson MT (2008) Iron chelators can protect against oxidative stress through ferryl heme reduction. Free Radic Biol Med 44:264–273. doi: 10.1016/j.freeradbiomed.2007.08.006 PubMedCrossRefGoogle Scholar
  38. Richards MP (2013) Redox Reactions of Myoglobin. Antioxid Redox Signal 18:2342–2351. doi: 10.1089/ars.2012.4887 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Rogers JT et al (2008) Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: riboregulation against neural oxidative damage in Alzheimer’s disease. Biochem Soc Trans 36:1282–1287. doi: 10.1042/bst0361282 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Romeu M, Aranda N, Giralt M, Ribot B, Nogues MR, Arija V (2013) Diet, iron biomarkers and oxidative stress in a representative sample of Mediterranean population. Nutr J. doi: 10.1186/1475-2891-12-102 PubMedCentralPubMedGoogle Scholar
  41. Rosa G, Trugo NMF (1994) Iron uptake from lactoferrin by intestinal brush-border membrane vesicles of human neonates. Braz J Med Biol Res 27:1527–1531PubMedGoogle Scholar
  42. Salim Ur R, Huma N, Tarar OM, Shah WH (2010) Efficacy of non-heme iron fortified diets: a review, crit Rev Food Sci Nutr 50:403–413 doi: 10.1080/10408390802304206
  43. Sawa T, Akaike T, Kida K, Fukushima Y, Takagi K, Maeda H (1998) Lipid peroxyl radicals from oxidized oils and heme-iron: implication of a high-fat diet in colon carcinogenesis. Cancer Epidemiol Biomark Prev 7:1007–1012Google Scholar
  44. Schryvers AB, Lee BC (1989) Comparative analysis of the transferrin and lactoferrin binding proteins in the family Neisseriacae. Can J Microbiol 35:409–415PubMedCrossRefGoogle Scholar
  45. Sharp P, Srai SK (2007) Molecular mechanisms involved in intestinal iron absorption. World J Gastroenterol 13:4716–4724PubMedGoogle Scholar
  46. Steinbicker AU, Muckenthaler MU (2013) Out of balance-systemic iron homeostasis in iron-related disorders nutrients 5:3034–3061. doi: 10.3390/nu5083034 Google Scholar
  47. Stone WL, Papas AM (1997) Tocopherols and the etiology of colon cancer. J Natl Cancer Inst 89:1006–1014. doi: 10.1093/jnci/89.14.1006 PubMedCrossRefGoogle Scholar
  48. Storcksdieck S, Bonsmann G, Hurrell RF (2007) Iron-binding properties, amino acid composition, and structure of muscle tissue peptides from in vitro digestion of different meat sources. J Food Sci 72:S19–S29. doi: 10.1111/j.1750-3841.2006.00229.x CrossRefGoogle Scholar
  49. Tandara L, Salamunic I (2012) Iron metabolism: current facts and future directions. Biochemia Medica 22:311–328PubMedCentralPubMedCrossRefGoogle Scholar
  50. Uchida T, Oda T, Sato K, Kawakami H (2006) Availability of lactoferrin as a natural solubilizer of iron for food products Int Dairy J 16:95–101. doi: 10.1016/j.idairyj.2005.01.013 Google Scholar
  51. Vaghefi N, Nedjaoum F, Guillochon D, Bureau F, Arhan P, Bougle D (2002) Influence of the extent of hemoglobin hydrolysis on the digestive absorption of heme iron an in vitro study. J Agr Food Chem 50:4969–4973. doi: 10.1021/jf01090165 CrossRefGoogle Scholar
  52. Van Veen HA, Geerts MEJ, Van Berkel PHC, Nuijens JH (2002) Analytical cation-exchange chromatography to assess the identity purity, and N-terminal integrity of human lactoferrin. Anal Biochem 309:60–66PubMedCrossRefGoogle Scholar
  53. Ward PP, Zhou X, Conneely OM (1996) Cooperative interactions between the amino- and carboxyl-terminal lobes contribute to the unique iron-binding stability of lactoferrin. J Biolo Chem 271:12790–12794Google Scholar
  54. WCRF (2007) Food, nutrition, physical activity and the prevention of cancer: a global perspective. WCRF and American Institute for Cancer Research, Washington DCGoogle Scholar
  55. Weinberg ED (2010) The hazards of iron loading Metallomics 2:732–740. doi: 10.1039/c0mt00023j Google Scholar
  56. Yao XD, Bunt C, Cornish J, Quek SY, Wen JY (2013) Improved RP-HPLC method for determination of bovine lactoferrin and its proteolytic degradation in simulated gastrointestinal fluids. Biomed Chromatogr 27:197–202. doi: 10.1002/bmc.2771 PubMedCrossRefGoogle Scholar
  57. You LJ, Zhao M, Regenstein JM, Ren JY (2010) Changes in the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates during a simulated gastrointestinal digestion. Food Chem 120:810–816. doi: 10.1016/j.foodchem.2009.11.018 CrossRefGoogle Scholar
  58. Zacharski LR, Ornstein DL, Woloshin S, Schwartz LM (2000) Association of age, sex, and race with body iron stores in adults: analysis of NHANES III data. Am Heart J 140:98–104. doi: 10.1067/mhj.2000.106646 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hemalatha Jegasothy
    • 1
  • Rangika Weerakkody
    • 1
  • Sophie Selby-Pham
    • 1
  • Louise E. Bennett
    • 1
    Email author
  1. 1.CSIRO Food, Nutrition and BioproductsWerribeeAustralia

Personalised recommendations