, Volume 27, Issue 6, pp 1337–1349 | Cite as

Investigation of metal sorption behavior of Slp1 from Lysinibacillus sphaericus JG-B53: a combined study using QCM-D, ICP-MS and AFM

  • Matthias SuhrEmail author
  • Nancy Unger
  • Karen E. Viacava
  • Tobias J. Günther
  • Johannes Raff
  • Katrin Pollmann


Surface layer proteins (S-layer) of Lysinibacillus sphaericus JG-B53 are biological compounds with several bio-based technical applications such as biosorptive materials for metal removal or rare metals recovery from the environment. Despite their well-described applications, a deeper understanding of their metal sorption behavior still remains challenging. The metal sorption ability of Au3+, Pd2+, Pt2+ and Eu3+ was investigated by ICP-MS, AFM and QCM-D which enables the sorption detection in real-time during in situ experiments. Results indicate a high binding of Pd, followed by Au, Eu and Pt to the proteins. The comparison between different methods allowed a deeper understanding of the metal sorption of isolated S-layer either frees in liquid, adsorbed forming a protein layer or as the bacteria surface.


Biosorption Metals S-layer QCM-D AFM ICP-MS 



The present work was partially funded by the BMBF-project BIONA (BMBF/DLR 01RB0805A). The author of this paper would like to thank Aline Ritter for her valuable support with ICP-MS measurements. Special thanks to Prof. E. Brunner (TU Dresden), Prof. J.-U. Ackermann (HTW Dresden).


  1. Allen KN, Imperiali B (2010) Lanthanide-tagged proteins—an illuminating partnership. Curr Opin Chem Biol 14:247–254. doi: 10.1016/j.cbpa.2010.01.004 PubMedCrossRefGoogle Scholar
  2. Amini M, Younesi H, Bahramifar N (2013) Biosorption of U(VI) from aqueous solution by Chlorella vulgaris: equilibrium kinetic, and thermodynamic studies. J Environ Eng-ASCE 139:410–421. doi: 10.1061/(asce)ee.19437870.0000651 CrossRefGoogle Scholar
  3. Bertini I, Gelis I, Katsaros N, Luchinat C, Provenzani A (2003) Tuning the affinity for lanthanides of calcium binding proteins. Biochemistry 42:8011–8021. doi: 10.1021/bi034494z PubMedCrossRefGoogle Scholar
  4. Beveridge TJ, Graham LL (1991) Surface-layers of bacteria. Microbiol Rev 55:684–705PubMedCentralPubMedGoogle Scholar
  5. Bonroy K et al (2004) Realization and characterization of porous gold for increased protein coverage on acoustic sensors. Anal Chem 76:4299–4306. doi: 10.1021/ac049893u PubMedCrossRefGoogle Scholar
  6. Caruso F, Furlong DN, Kingshott P (1997) Characterization of ferritin adsorption onto gold. J Colloid Interface Sci 186:129–140. doi: 10.1006/jcis.1996.4625 PubMedCrossRefGoogle Scholar
  7. Chassary P, Vincent T, Marcano JS, Macaskie LE, Guibal E (2005) Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy 76:131–147. doi: 10.1016/j.hydromet.2004.10.004 CrossRefGoogle Scholar
  8. Chojnacka K (2010) Biosorption and bioaccumulation—the prospects for practical applications. Environ Int 36:299–307. doi: 10.1016/j.envint.2009.12.001 PubMedCrossRefGoogle Scholar
  9. Creamer N, Baxter-Plant V, Henderson J, Potter M, Macaskie L (2006) Palladium and gold removal and recovery from precious metal solutions and electronic scrap leachates by Desulfovibrio desulfuricans. Biotechnol Lett 28:1475–1484. doi: 10.1007/s10529-006-9120-9 PubMedCrossRefGoogle Scholar
  10. Das N (2010) Recovery of precious metals through biosorption—a review. Hydrometallurgy 103:180–189. doi: 10.1016/j.hydromet.2010.03.016 CrossRefGoogle Scholar
  11. Decher G, Schmitt J (1992) Fine-tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes. Trends in Colloid and Interface Science Vi, vol 89. Dr Dietrich Steinkopff Verlag, BerlinGoogle Scholar
  12. Decher G, Lehr B, Lowack K, Lvov Y, Schmitt J (1994) New nanocomposite films for biosensors—layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA. Biosens Bioelectron 9:677–684CrossRefGoogle Scholar
  13. Delcea M, Krastev R, Gutberlet T, Pum D, Sleytr UB, Toca-Herrera JL (2008) Thermal stability, mechanical properties and water content of bacterial protein layers recrystallized on polyelectrolyte multilayers. Soft Matter 4:1414–1421. doi: 10.1039/b719408k CrossRefGoogle Scholar
  14. Edvardsson M, Rodahl M, Kasemo B, Höök F (2005) A dual-frequency QCM-D setup operating at elevated oscillation amplitudes Anal Chem 77:4918–4926. doi: 10.1021/ac050116j Google Scholar
  15. Engelhardt H, Saxton WO, Baumeister W (1986) 3-Dimensional structure of the tetragonal surface-layer of Sporosarcina-urea. J Bacteriol 168:309–317PubMedCentralPubMedGoogle Scholar
  16. Fahmy K, Merroun M, Pollmann K, Raff J, Savchuk O, Hennig C, Selenska-Pobell S (2006) Secondary structure and Pd(II) coordination in S-Layer proteins from Bacillus sphaericus studied by infrared and X-ray absorption spectroscopy. Biophys J 91:996–1007. doi: 10.1529/biophysj.105.079137 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Godlewska-Zylkiewicz B (2003) Biosorption of platinum and palladium for their separation/preconcentration prior to graphite furnace atomic absorption spectrometric determination. Spectroc Acta Pt B-Atom Spectr 58:1531–1540. doi: 10.1016/s0584-8547(03)00076-4 CrossRefGoogle Scholar
  18. Günther TJ, Suhr M, Raff J, Pollmann K (2014) Immobilization of microorganisms for AFM studies in liquids RSC Advances. doi:  10.1039/c4ra03874f
  19. Habibi N, Pastorino L, Soumetz FC, Sbrana F, Raiteri R, Ruggiero C (2011) Nanoengineered polymeric S-layers based capsules with targeting activity. Colloids Surf B 88:366–372. doi: 10.1016/j.colsurfb.2011.07.015 CrossRefGoogle Scholar
  20. Harewood K, Wolff JS (1973) Rapid electrophoretic procedure for detection of SDS-released oncorna-viral RNA using polyacrylamide-agarose gels. Anal Biochem 55:573–581. doi: 10.1016/0003-2697(73)90146-2 PubMedCrossRefGoogle Scholar
  21. Hillier AC, Bard AJ (1997) ac-mode atomic force microscope imaging in air and solutions with a thermally driven bimetallic cantilever probe. Rev Sci Instrum 68:2082–2090. doi: 10.1063/1.1148101 CrossRefGoogle Scholar
  22. Höök F, Kasemo B, Nylander T, Fant C, Sott K, Elwing H (2001) Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Anal Chem 73:5796–5804. doi: 10.1021/ac0106501 PubMedCrossRefGoogle Scholar
  23. Horejs C, Gollner H, Pum D, Sleytr UB, Peterlik H, Jungbauer A, Tscheliessnig R (2011) Atomistic structure of monomolecular surface layer self-assemblies: toward functionalized nanostructures. ACS Nano 5:2288–2297. doi: 10.1021/nn1035729 PubMedCrossRefGoogle Scholar
  24. Hosea M, Greene B, McPherson R, Henzl M, Alexander MD, Darnall DW (1986) Accumulation of elemental gold on the alga Chlorella vulgaris Inorganica Chimica Acta-Bioinorganic. Chemistry 123:161–165. doi: 10.1016/s0020-1693(00)86339-2 Google Scholar
  25. Hovgaard MB, Dong MD, Otzen DE, Besenbacher F (2007) Quartz crystal microbalance studies of multilayer glucagon fibrillation at the solid-liquid interface. Biophys J 93:2162–2169. doi: 10.1529/biophysj.107.109686 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Krozer A, Rodahl M (1997) X-ray photoemission spectroscopy study of UV/ozone oxidation of Au under ultrahigh vacuum conditions. J Vac Sci Technol 15:1704–1709. doi: 10.1116/1.580924 CrossRefGoogle Scholar
  27. Laemmli UK (1970) Cleavage of structural proteins during assembly of head bacteriophage T4. Nature 227:680–700PubMedCrossRefGoogle Scholar
  28. Lederer FL, Weinert U, Günther TJ, Raff J, Weiß S, Pollmann K (2013) Identification of multiple putative S-layer genes partly expressed by Lysinibacillus sphaericus JG-B53. Microbiology 159:1097–1108PubMedCrossRefGoogle Scholar
  29. Ledin M (2000) Accumulation of metals by microorganisms—processes and importance for soil systems. Earth-Sci Rev 51:1–31. doi: 10.1016/S0012-8252(00)00008-8 CrossRefGoogle Scholar
  30. Liu SX, Kim JT (2009) Application of Kelvin–Voigt model in quantifying Whey protein adsorption on polyethersulfone using QCM-D. Jala 14:213–220. doi: 10.1016/j.jala.2009.01.003 Google Scholar
  31. Lovley DR, Lloyd JR (2000) Microbes with a mettle for bioremediation. Nat Biotechnol 18:600–601. doi: 10.1038/76433 PubMedCrossRefGoogle Scholar
  32. Markai S, Andres Y, Montavon G, Grambow B (2003) Study of the interaction between europium(III) and Bacillus subtilis: fixation sites, biosorption modeling and reversibility. J Colloid Interface Sci 262:351–361. doi: 10.1016/s0021-9797(03)00096-1 PubMedCrossRefGoogle Scholar
  33. Maruyama T, Matsushita H, Shimada Y, Kamata I, Sonokawa S, Kamiya N, Goto M (2007) Proteins and protein-rich biomass as environmentally friendly adsorbents selective for precious metal ions. Environ Sci Technol 41:1359–1364. doi: 10.1021/es061664x PubMedCrossRefGoogle Scholar
  34. Naja G, Mustin C, Volesky B, Berthelin J (2008) Biosorption study in a mining wastewater reservoir. Int J Environ Pollut 34:14–27. doi: 10.1504/ijep.2008.020779 CrossRefGoogle Scholar
  35. Panak P et al (1998) Bacteria from uranium mining waste pile: interactions with U(VI). J Alloy Compd 271:262–266. doi: 10.1016/s0925-8388(98)00067-x CrossRefGoogle Scholar
  36. Penfold J, Staples E, Tucker I, Thomas RK (2002) Adsorption of mixed anionic and nonionic surfactants at the hydrophilic silicon surface. Langmuir 18:5755–5760. doi: 10.1021/la011546h CrossRefGoogle Scholar
  37. Pidcock E, Moore GR (2001) Structural characteristics of protein binding sites for calcium and lanthanide ions. JBICJ Biol Inorg Chem 6:479–489CrossRefGoogle Scholar
  38. Pollmann K, Merroun M, Raff J, Hennig C, Selenska-Pobell S (2006a) Manufacturing and characterization of Pd nanoparticles formed on immobilized bacterial cells. Lett Appl Microbiol 43:39–45. doi: 10.1111/j.1472-765X.2006.01919.x PubMedCrossRefGoogle Scholar
  39. Pollmann K, Raff J, Merroun M, Fahmy K, Selenska-Pobell S (2006b) Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol Adv 24:58–68. doi: 10.1016/j.biotechadv.2005.06.002 PubMedCrossRefGoogle Scholar
  40. Pum D, Toca-Herrera JL, Sleytr UB (2013) S-layer protein self-assembly. Int J Mol Sci 14:2484–2501PubMedCentralPubMedCrossRefGoogle Scholar
  41. Raff J (2002) Wechselwirkungen der Hüllproteine von Bakterien aus Uranabfallhalden mit Schvvermetallen. PromotionsarbeitGoogle Scholar
  42. Raff J, Selenska-Pobell S (2006) Toxic avengers. Nucl Eng Int 51:34–36Google Scholar
  43. Raff J, Soltmann U, Matys S, Selenska-Pobell S, Bottcher H, Pompe W (2003) Biosorption of uranium and copper by biocers. Chem Mat 15:240–244. doi: 10.1021/cm021213l CrossRefGoogle Scholar
  44. Rais D, Nowack B, Schulin R, Luster J (2006) Sorption of trace metals by standard and micro suction cups in the absence and presence of dissolved organic carbon. J Environ Qual 35:50–60. doi: 10.2134/jeq2005.0040 PubMedCrossRefGoogle Scholar
  45. Reviakine I, Rossetti FF, Morozov AN, Textor M (2005) Investigating the properties of supported vesicular layers on titanium dioxide by quartz crystal microbalance with dissipation measurements. J Chem Phys. doi: 10.1063/1.1908500 PubMedGoogle Scholar
  46. Roach P, Farrar D, Perry CC (2005) Interpretation of protein adsorption: surface-induced conformational changes. J Am Chem Soc 127:8168–8173. doi: 10.1021/ja042898o PubMedCrossRefGoogle Scholar
  47. Sara M, Sleytr UB (2000) S-layer proteins. J Bacteriol 182:859–868. doi: 10.1128/jb.182.4.859-868.2000 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Schiewer S, Volesky B (2000) Biosorption processes for heavy metal removal. In: Lovely DR (ed) Environmental Microbe-Metal Interactions. ASM Press, Washington, DC, pp 329–362 (Invited book chapter)Google Scholar
  49. Selenska-Pobell S, Kampf G, Flemming K, Radeva G, Satchanska G (2001) Bacterial diversity in soil samples from two uranium waste piles as determined by rep-APD, RISA and 16S rDNA retrieval Antonie Van Leeuwenhoek 79:149–161 doi: 10.1023/a:1010237711077
  50. Sleytr UB, Messner P, Pum D, Sara M (1999) Crystalline bacterial cell surface layers (S layers): From supramolecular cell structure to biomimetics and nanotechnology. Angew Chem-Int Edit 38:1035–1054CrossRefGoogle Scholar
  51. Sleytr UB, Sara M, Pum D, Schuster B (2001) Characterization and use of crystalline bacterial cell surface layers. Prog Surf Sci 68:231–278CrossRefGoogle Scholar
  52. Spain A, Alm E (2003) Implications of microbial heavy metal tolerance in the environment. Rev Undergrad Res 2:1–6Google Scholar
  53. Sprott GD, Koval SF, Schnaitman CA (1994) Methods for general and molecular bacteriology. Cell Fractionation, vol 1325. American Society for Microbiology, Washington, DCGoogle Scholar
  54. Srinath T, Verma T, Ramteke PW, Garg SK (2002) Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48:427–435. doi: 10.1016/s0045-6535(02)00089-9 PubMedCrossRefGoogle Scholar
  55. Stewart M, Beveridge TJ, Trust TJ (1986) Two patterns in the aeromonas salmonicida a-layer may reflect a structural transformation that alters permeability. J Bacteriol 166:120–127PubMedCentralPubMedGoogle Scholar
  56. Toca-Herrera JL et al (2005) Recrystallization of bacterial S-layers on flat polyelectrolyte surfaces and hollow polyelectrolyte capsutes. Small 1:339–348. doi: 10.1002/smll.200400035 PubMedCrossRefGoogle Scholar
  57. Umeda H, Sasaki A, Takahashi K, Haga K, Takasaki Y, Shibayama A (2011) Recovery and concentration of precious metals from strong acidic. Wastewater Mater Trans 52:1462–1470CrossRefGoogle Scholar
  58. Vig JR (1985) UV ozone cleaning of surfaces. J Vac Sci Technol A 3:1027–1034. doi: 10.1116/1.573115 CrossRefGoogle Scholar
  59. Vilar VJP, Botelho CMS, Boaventura RAR (2010) Environmental friendly technologies for wastewater treatment: biosorption of heavy metals using low cost materials and solar photocatalysis. In: Atimtay AT, Sikdar SK (eds) Security of industrial water supply and management. NATO Science for peace and security series C-Environmental security. Springer, Dordrecht, pp 159–173. doi: 10.1007/978-94-007-1805-0_11
  60. Vogel M, Günther A, Rossberg A, Li B, Bernhard G, Raff J (2010) Biosorption of U(VI) by the green algae Chlorella vulgaris in dependence of pH value and cell activity. Sci Total Environ 409:384–395. doi: 10.1016/j.scitotenv.2010.10.011 PubMedCrossRefGoogle Scholar
  61. Voinova MV, Rodahl M, Jonson M, Kasemo B (1999) Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Phys Scr 59:391–396. doi: 10.1238/Physica.Regular.059a00391 CrossRefGoogle Scholar
  62. Volesky B (2007) Biosorption and me. Water Res 41:4017–4029. doi: 10.1016/j.watres.2007.05.062 PubMedCrossRefGoogle Scholar
  63. Ward MD, Buttry DA (1990) Insitu interfacial mass detection with piezoelectric transducers. Science 249:1000–1007. doi: 10.1126/science.249.4972.1000 PubMedCrossRefGoogle Scholar
  64. Weinert U, Pollmann K, Raff J (2013) Fluorescence resonance energy transfer by S-layer coupled fluorescence dyes. Sens Actuat B 185:553–559. doi: 10.1016/j.snb.2013.05.051 CrossRefGoogle Scholar
  65. Zeng R, Zhang Y, Tu M, Zhou CR (2009) Protein Adsorption Behaviors on PLLA Surface studied by quartz crystal microbalance with dissipation monitoring (QCM-D). In: Gu ZW, Han YF, Pan FH, Wang XT, Weng D, Zhou SX (eds) Materials research, Pts 1 and 2, vol 610–613. Materials Science Forum. Trans Tech Publications Ltd, Stafa-Zurich, pp 1219–1223Google Scholar
  66. Zhang C (2007) Fundamentals of environmental sampling and analysis, 1st edn. Wiley, HobokenCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Matthias Suhr
    • 1
    Email author
  • Nancy Unger
    • 1
  • Karen E. Viacava
    • 1
  • Tobias J. Günther
    • 2
  • Johannes Raff
    • 1
    • 2
  • Katrin Pollmann
    • 2
  1. 1.Institute of Resource EcologyHelmholtz-Zentrum Dresden-RossendorfDresdenGermany
  2. 2.Helmholtz-Institute Freiberg for Resource TechnologyHelmholtz-Zentrum Dresden-RossendorfDresdenGermany

Personalised recommendations