BioMetals

, Volume 27, Issue 5, pp 857–874 | Cite as

Effects of lactoferrin on intestinal epithelial cell growth and differentiation: an in vivo and in vitro study

  • Anne Blais
  • Cuibai Fan
  • Thierry Voisin
  • Najat Aattouri
  • Michel Dubarry
  • François Blachier
  • Daniel Tomé
Article

Abstract

This study was designed to analyse the effects of human (h) and bovine lactoferrin (bLF) on the growth and differentiation of intestinal cells using the mice model supplemented with Lactoferrin (LF) and the enterocyte-like model of Caco-2 cells which spontaneously differentiate after confluency. In mice, bLF supplementation increased jejunal villus height and the expression of several intestinal brush border membrane enzymes activities. Addition of bLF or hLF to undifferentiated Caco-2 cells was able to increase cell proliferation with confluency being reached more rapidly. Moreover, when Caco-2 cells were grown in the presence of LF for 3 weeks, brush-border membrane-associated enzyme activities i.e. sucrase, alkaline phosphatase and neutral aminopeptidase, as well as the l-glutamate transporter expression were all increased indicating an increased Caco-2 cell differentiation. Accordingly, cDNA Atlas array and Western blot analysis of cell cycle proteins shown a decreased expression of Cdck2 and an increased TAF1 expression; these proteins being implicated in the regulation of numerous genes related to cellular proliferation and differentiation. These modifications were associated with an inhibition of Caco-2 cell spontaneous apoptosis. Altogether, our results indicate that LF increase in vivo and in vitro enterocyte differentiation. In addition, LF was found to increase in vitro enterocyte proliferation resulting in higher cell density in cell flasks, an effect that was likely partly due to a reduction of the cellular apoptosis. The different stimulation patterns observed for the different parameters associated with cell differentiation in relationship with specific gene regulation is discussed.

Keywords

Lactoferrin Intestinal epithelial cell growth Enterocyte differentiation Apoptosis 

References

  1. Akiyama Y, Oshima K, Kuhara T, Shin K, Abe F, Iwatsuki K, Nadano D, Matsuda T (2013) A lactoferrin-receptor, intelectin 1, affects uptake, sub-cellular localization and release of immunochemically detectable lactoferrin by intestinal epithelial Caco-2 cells. J Biochem 154(5):437–448. doi:10.1093/jb/mvt073 PubMedCrossRefGoogle Scholar
  2. Aoyagi N, Wassarman DA (2000) Genes encoding Drosophila melanogaster RNA polymerase II general transcription factors: diversity in TFIIA and TFIID components contributes to gene-specific transcriptional regulation. J Cell Biol 150(2):F45–F50PubMedCrossRefGoogle Scholar
  3. Ashida K, Sasaki H, Suzuki Y, Lönnerdal B (2004) Cellular internalization of lactoferrin in intestinal epithelial cells. Biometals 17(3):311–315. doi:10.1023/B:BIOM.0000027710.13543.3f PubMedCrossRefGoogle Scholar
  4. Azuma N, Nori H, Kaminogawa S, Yamauchi K (1989) Stimulatory effect of human lactoferrin on DNA synthesis in BALB/c3T3. Agric Biol Chem 53:31–35CrossRefGoogle Scholar
  5. Blais A, Bissonnette P, Berteloot A (1987) Common characteristics for Na+ -dependent sugar transport in Caco-2 cells and human fetal colon. J Membr Biol 99(2):113–125PubMedCrossRefGoogle Scholar
  6. Blais A, Malet A, Mikogami T, Martin-Rouas C, Tomé D (2009) Oral bovine lactoferrin improves bone status of ovariectomized mice. Am J Physiol Endocrinol Metab 296(6):E1281–E1288. doi:10.1152/ajpendo.90938.2008 PubMedCrossRefGoogle Scholar
  7. Britigan BE, Serody JS, Cohen MS (1994) The role of lactoferrin as an anti-inflammatory molecule. Adv Exp Med Biol 357:143–156PubMedCrossRefGoogle Scholar
  8. Britton JR, Koldovský O (1989) Gastric luminal digestion of lactoferrin and transferrin by preterm infants. Early Hum Dev 19:127–135PubMedCrossRefGoogle Scholar
  9. Buccigrossi V, de Marco G, Bruzzese E, Ombrato L, Bracale I, Polito G, Guarino A (2007) Lactoferrin induces concentration-dependent functional modulation of intestinal proliferation and differentiation. Pediatr Res 61(4):410–414. doi:10.1203/pdr.0b013e3180332c8d PubMedCrossRefGoogle Scholar
  10. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidine thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159PubMedCrossRefGoogle Scholar
  11. Cornish J, Naot D (2010) Lactoferrin as an effector molecule in the skeleton. Biometals 23(3):425–430. doi:10.1007/s10534-010-9320-6 PubMedCrossRefGoogle Scholar
  12. Dahlquist A (1964) Method for assay of intestinal disaccharidases. Anal Biochem 7:18–25CrossRefGoogle Scholar
  13. Damiens E, Mazurier J, El Yazidi I, Masson M, Duthille I, Spik G, Boilly-Marer Y (1998) Effects of human lactoferrin on NK cells cytotoxicity against haematopoietic and tumor epithelial cells. Biochim Biophys Acta 1402:277–287PubMedCrossRefGoogle Scholar
  14. Damiens E, Mazurier J, El Yazidi I, Masson M, Duthille I, Spik G, Boilly-Marer (1999) Lactoferrin inhibits G1 cyclin-dependent kinases during growth arrest of human breast carcinoma cells. J Cell Biochem 74:486–498PubMedCrossRefGoogle Scholar
  15. Davidson LA, Lonnerdal B (1987) Persistence of human milk proteins in the breast-fed infant. Acta Paediatr Scand 76(5):733–740. doi:10.1111/j.1651-2227.1987 PubMedCrossRefGoogle Scholar
  16. Davidson LA, Lonnerdal B (1988) Specific binding of lactoferrin to brush-border membrane: ontogeny and effect of glycan chain. Am J Physiol 254(4):G580–G585PubMedGoogle Scholar
  17. Eichholz A (1967) Structural and functional organization of the brush border of epithelial cells. III. Enzymic activities and chemical composition of various fractions of tris-disrupted brush border. Biochim Biophys Acta 135:475–482PubMedCrossRefGoogle Scholar
  18. Fischer R, Debbabi H, Blais A, Dubarry M, Rautureau M, Boyaka PN, Tome D (2007) Uptake of ingested bovine lactoferrin and its accumulation in adult mouse tissues. Int Immunopharcol 7:1387–1393CrossRefGoogle Scholar
  19. Fleet JC (1995) A new role for lactoferrin: DNA binding and transcription activation. Nutr Rev 53:226–227PubMedCrossRefGoogle Scholar
  20. He H, Furmanski P (1995) Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA. Nature 373:721–724PubMedCrossRefGoogle Scholar
  21. Hu WL, Mazurier J, Sawatzki G, Montreuil J, Spik G (1988) Lactotransferrin receptor of mouse small-intestinal brush border. Binding characteristics of membrane-bound and triton X-100 solubilized froms. Biochem J 249:425–441Google Scholar
  22. Hung CM, Yeh CC, Chen HL, Lai CW, Kuo MF, Yeh MH, Lin W, Tu MY, Cheng HC, Chen CM (2010) Porcine lactoferrin administration enhances peripheral lymphocytes proliferation and assists infectious bursal disease vaccination in native chickens. Vaccine 28(16):2895–2902. doi:10.1016/j.vaccine.2010.01.066 PubMedCrossRefGoogle Scholar
  23. Hurley WL, Hegarty HM, Metzler JT (1994) Inhibition of mammary cell growth by lactoferrin: a comparative study. Life Sci 55:1955–1963PubMedCrossRefGoogle Scholar
  24. Kawakami H, Lönnerdal B (1991) Isolation and function of a receptor for human lactoferrin in human fetal intestinal brush-border membranes. Am J Physiol 261(5):G841–G846PubMedGoogle Scholar
  25. Ko TC, Beauchamp RD, Townsend CM Jr, Thompson EA, Thompson JC (1994) Transforming growth factor-beta inhibits rat intestinal cell growth by regulating cell cycle specific gene expression. Am J Surg 167(1):14–20PubMedCrossRefGoogle Scholar
  26. Kuwata H, Yamauchi K, Teraguchi S, Ushida Y, Shimokawa Y, Toida T, Hayasawa H (2001) Functional fragments of ingested lactoferrin are resistant to proteolytic degradation in the gastrointestinal tract of adult rats. J Nutr 131(8):2121–2127PubMedGoogle Scholar
  27. Le Magnen C, Rainard P, Maubois JL, Paraf A, Phan Thanh L (1989) Enzyme linked immunosorbent assay for bovine lactoferrin titration. Le Lait 69:23–28CrossRefGoogle Scholar
  28. Lee SH, Pyo CW, Hahm DH, Kim J, Choi SY (2009) Iron-saturated lactoferrin stimulates cell cycle progression through PI3K/Akt pathway. Mol Cells 28(1):37–42. doi:10.1007/s10059-009-0102-3 PubMedCrossRefGoogle Scholar
  29. Leforestier G, Blais A, Blachier F, Marsset-Baglieri A, Davila-Gay AM, Perrin E, Tomé D (2009) Effects of galacto-oligosaccharide ingestion on the mucosa-associated mucins and sucrase activity in the small intestine of mice. Eur J Nutr 48(8):457–464. doi:10.1007/s00394-009-0036-8 PubMedCrossRefGoogle Scholar
  30. Legrand D, Mazurier J (2010) A critical review of the roles of host lactoferrin in immunity. Biometals 23:365–376. doi:10.1007/s10534-010-9297-1 PubMedCrossRefGoogle Scholar
  31. Levay PF, Viljoen M (1995) Lactoferrin: a general review. Haematologica 80(3):252–267PubMedGoogle Scholar
  32. Liao Y, Jiang R, Lönnerdal B (2012) Biochemical and molecular impacts of lactoferrin on small intestinal growth and development during early life. Biochem Cell Biol 90(3):476–484. doi:10.1139/o11-075 PubMedCrossRefGoogle Scholar
  33. Liu X, Zhao J, Li F, Guo YS, Hellmich MR, Townsend CM Jr, Cao Y, Ko TC (2009) Bombesin enhances TGF-beta growth inhibitory effect through apoptosis induction in intestinal epithelial cells. Regul Pept 158(1–3):26–31. doi:10.1016/j.regpep.2009.07.010 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Lönnerdal B (2009) Nutritional roles of lactoferrin. Curr Opin Clin Nutr Metab Care 3:293–297. doi:10.1097/MCO.0b013e328328d13e
  35. Lönnerdal B, Iyer S (1995) Lactoferrin: molecular structure and biological function. Ann Rev Nutr 15:93–110CrossRefGoogle Scholar
  36. Lönnerdal B, Jiang R, Du X (2011) Bovine lactoferrin can be taken up by the human intestinal lactoferrin receptor and exert bioactivities. J Pediatr Gastroenterol Nutr 53(6):606–614. doi:10.1097/MPG.0b013e318230a419 PubMedGoogle Scholar
  37. Malet A, Bournaud E, Lan A, Mikogami T, Tomé D, Blais A (2011) Bovine lactoferrin improves bone status of ovariectomized mice via immune function modulation. Bone 48(5):1028–1035. doi:10.1016/j.bone.2011.02.002 PubMedCrossRefGoogle Scholar
  38. Maroux S, Louvard D, Battari J (1973) The aminopeptidase from hog intestinal brush border. Biochim Biophys Acta 321:282–295PubMedCrossRefGoogle Scholar
  39. Massagué J (2000) How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1(3):169–178PubMedCrossRefGoogle Scholar
  40. Mazurier J, Montreuil J, Spik G (1985) Visualization of lactotransferrin brush-border receptors by ligand-blotting. Biochim Biophys Acta 821(3):453–460. doi:10.1016/0005-2736(85)90050-1 PubMedCrossRefGoogle Scholar
  41. Mordrelle A, Julian E, Costa C, Cormet-Boyaka E, Benamouzig R, Tomé D, Huneau JF (2000) EAAT1 is involved in transport of l-glutamate during differentiation of Caco-2 cell line. Am J Physiol Gastrointest Liver Physiol 279:G366–G373PubMedGoogle Scholar
  42. Nagatsu T, Hino M, Fuyamada H, Hayakawa T, Sakakibara S, Nakagawa T, Takemoto T (1976) New chromogenic substrates for x-prolyl dipeptidyl aminopeptidase. Anal Biochem 74:466–476PubMedCrossRefGoogle Scholar
  43. Naot D, Chhana A, Matthews BG, Callon KE, Tong PC, Lin JM, Costa JL, Watson M, Grey AB, Cornish J (2011) Molecular mechanisms involved in the mitogenic effect of lactoferrin in osteoblasts. Bone 49(2):217–224. doi:10.1016/j.bone.2011.04.002 PubMedCrossRefGoogle Scholar
  44. Oguchi S, Walker WA, Sanderson IR (1995) Iron saturation alters the effect of lactoferrin on the proliferation and differentiation of human enterocytes (Caco-2 Cells). Biol Neonate 67:330–339PubMedCrossRefGoogle Scholar
  45. Pierce A, Colavizza D, Benaissa M, Maes P, Tartar A, Montreuil J, Spik G (1991) Molecular cloning and sequence analysis of bovine lactotransferrin. Eur J Biochem 196(1):177–184PubMedCrossRefGoogle Scholar
  46. Rouet-Benzineb P, Rouyer-Fessard C, Jarry A, Avondo V, Pouzet C, Yanagisawa M, Laboisse C, Laburthe M, Voisin T (2004) Orexins acting at native OX(1) receptor in colon cancer and neuroblastoma cells or at recombinant OX(1) receptor suppress cell growth by inducing apoptosis. J Biol Chem 279(44):45875–45886PubMedCrossRefGoogle Scholar
  47. Sturm A, Dignass AU (2008) Epithelial restitution and wound healing in inflammatory bowel disease. World J Gastroenterol 14(3):348–353PubMedCentralPubMedCrossRefGoogle Scholar
  48. Suzuki T (2013) Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 70:631–659. doi:10.1007/s00018-012-1070-x PubMedCrossRefGoogle Scholar
  49. Suzuki YA, Shin K, Lönnerdal B (2001) Molecularcloning and functional expression of a human intestinal lactoferrin receptor. Biochem 40:15771–15779CrossRefGoogle Scholar
  50. Suzuki YA, Lopez V, Lönnerdal B (2005) Mammalian lactoferrin receptors: structure and function. Cell Mol Life Sci 62(22):2560–2575PubMedCrossRefGoogle Scholar
  51. Tang L, Cui T, Wu JJ, Liu-Mares W, Huang N, Li J (2010) A rice-derived recombinant human lactoferrin stimulates fibroblast proliferation, migration, and sustains cell survival. Wound Repair Regen 18(1):123–131. doi:10.1111/j.1524-475X.2009.00563.x PubMedCrossRefGoogle Scholar
  52. Voisin T, El Firar A, Rouyer-Fessard C, Gratio V, Laburthe M (2008) A hallmark of immunoreceptor, the tyrosine-based inhibitory motif ITIM, is present in the G protein-coupled receptor OX1R for orexins and drives apoptosis: a novel mechanism. FASEB J. 22(6):1993–2002. doi:10.1096/fj.07-098723 PubMedCrossRefGoogle Scholar
  53. Wang Y, Shan T, Xu Z, Liu J, Feng J (2006) Effect of lactoferrin on the growth performance, intestinal morphology, and expression of PR-39 and protegrin-1 genes in weaned piglets. J Anim Sci 84(10):2636–2641PubMedCrossRefGoogle Scholar
  54. Yagi M, Suzuki N, Takayama T, Arisue M, Kodama T, Yoda Y, Otsuka K, Ito K (2009) Effects of lactoferrin on the differentiation of pluripotent mesenchymal cells. Cell Biol Int 33(3):283–289. doi:10.1016/j.cellbi.2008.11.013 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Anne Blais
    • 1
  • Cuibai Fan
    • 1
  • Thierry Voisin
    • 2
  • Najat Aattouri
    • 1
  • Michel Dubarry
    • 1
  • François Blachier
    • 1
  • Daniel Tomé
    • 1
  1. 1.UMR 914 INRA- AgroParisTech Nutrition Physiology and Ingestive BehaviourParisFrance
  2. 2.UMR 1149 INSERM/CRI - Université Paris Diderot, Faculté de Médecine BichatParisFrance

Personalised recommendations