BioMetals

, Volume 27, Issue 5, pp 969–980 | Cite as

Bactericidal effect of bovine lactoferrin and synthetic peptide lactoferrin chimera in Streptococcus pneumoniae and the decrease in luxS gene expression by lactoferrin

  • Nidia León-Sicairos
  • Uriel A. Angulo-Zamudio
  • Jorge E. Vidal
  • Cynthia A. López-Torres
  • Jan G. M. Bolscher
  • Kamran Nazmi
  • Ruth Reyes-Cortes
  • Magda Reyes-López
  • Mireya de la Garza
  • Adrian Canizalez-Román
Article

Abstract

Streptococcus pneumoniae (pneumococcus) is responsible for nearly one million child deaths annually. Pneumococcus causes infections such as pneumonia, otitis media, meningitis, and sepsis. The human immune system includes antibacterial peptides and proteins such as lactoferrin (LF), but its activity against pneumococcus is not fully understood. The aim of this work was to evaluate the bactericidal effect of bovine lactoferrin (bLF) and the synthetic LF-peptides lactoferricin (LFcin17–30), lactoferrampin (LFampin265–284), and LFchimera against S. pneumoniae planktonic cells. The mechanism of damage was also investigated, as well as the impact of these peptides on the transcription levels of genes known to encode important virulence factors. S. pneumoniae planktonic cells were treated with bLF, LFcin17–30, LFampin265–284 and LFchimera at different time points. The viability of treated planktonic cells was assessed by dilution and plating (in CFU/ml). The interaction between LF and LF-peptides coupled to fluorescein was visualized using a confocal microscope and flow cytometry, whereas the damage at structural levels was observed by electron microscopy. Damage to bacterial membranes was further evaluated by membrane permeabilization by use of propidium iodide and flow cytometry, and finally, the expression of pneumococcal genes was evaluated by qRT-PCR. bLF and LFchimera were the best bactericidal agents. bLF and peptides interacted with bacteria causing changes in the shape and size of the cell and membrane permeabilization. Moreover, the luxS gene was down-regulated in bacteria treated with LF. In conclusion, LF and LFchimera have a bactericidal effect, and LF down-regulates genes involved in the pathogenicity of pneumococcus, thus demonstrating potential as new agents for the treatment of pneumococcal infections.

Keywords

Lactoferrin Peptides Bactericidal effect Planktonic cells Pneumococcus 

References

  1. Abraham WR (2006) Controlling biofilms of Gram-positive pathogenic bacteria. Curr Med Chem 13(13):1509–1524PubMedCrossRefGoogle Scholar
  2. Ammons MC, Copie V (2013) Mini-review: lactoferrin: a bioinspired, anti-biofilm therapeutic. Biofouling 29(4):443–455. doi:10.1080/08927014.2013.773317 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Arnold RR, Brewer M, Gauthier JJ (1980) Bactericidal activity of human lactoferrin: sensitivity of a variety of microorganisms. Infect Immun 28(3):893–898PubMedCentralPubMedGoogle Scholar
  4. Avery OT, Macleod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79(2):137–158PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bolscher JG, Adao R, Nazmi K, van den Keybus PA, van’t Hof W, Amerongen AVN, Bastos M, Veerman EC (2009) Bactericidal activity of LFchimera is stronger and less sensitive to ionic strength than its constituent lactoferricin and lactoferrampin peptides. Biochimie 91(1):123–132. doi:10.1016/j.biochi.2008.05.019 PubMedCrossRefGoogle Scholar
  6. Bolscher J, Nazmi K, van Marle J, van’t Hof W, Veerman E (2012) Chimerization of lactoferricin and lactoferrampin peptides strongly potentiates the killing activity against Candida albicans. Biochem Cell Biol 90(3):378–388. doi:10.1139/o11-085 PubMedCrossRefGoogle Scholar
  7. Cavestro GM, Ingegnoli AV, Aragona G, Iori V, Mantovani N, Altavilla N, Dal Bo N, Pilotto A, Bertele A, Franze A, Di Mario F, Borghi L (2002) Lactoferrin: mechanism of action, clinical significance and therapeutic relevance. Acta Biomed 73(5–6):71–73PubMedGoogle Scholar
  8. Cvitkovitch DG, Li YH, Ellen RP (2003) Quorum sensing and biofilm formation in streptococcal infections. J Clin Invest 112(11):1626–1632. doi:10.1172/JCI20430 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Domenech M, Ramos-Sevillano E, Garcia E, Moscoso M, Yuste J (2013) Biofilm formation avoids complement immunity and phagocytosis of Streptococcus pneumoniae. Infect Immun 81(7):2606–2615. doi:10.1128/IAI.00491-13 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Flores-Villasenor H, Canizalez-Roman A, Reyes-Lopez M, Nazmi K, de la Garza M, Zazueta-Beltran J, Leon-Sicairos N, Bolscher JG (2010) Bactericidal effect of bovine lactoferrin, LFcin, LFampin and LFchimera on antibiotic-resistant Staphylococcus aureus and Escherichia coli. Biometals 23(3):569–578. doi:10.1007/s10534-010-9306-4 PubMedCrossRefGoogle Scholar
  11. Flores-Villasenor H, Canizalez-Roman A, de la Garza M, Nazmi K, Bolscher JG, Leon-Sicairos N (2012a) Lactoferrin and lactoferrin chimera inhibit damage caused by enteropathogenic Escherichia coli in HEp-2 cells. Biochimie 94(9):1935–1942. doi:10.1016/j.biochi.2012.05.011 PubMedCrossRefGoogle Scholar
  12. Flores-Villasenor H, Canizalez-Roman A, Velazquez-Roman J, Nazmi K, Bolscher JG, Leon-Sicairos N (2012b) Protective effects of lactoferrin chimera and bovine lactoferrin in a mouse model of enterohaemorrhagic Escherichia coli O157:H7 infection. Biochem Cell Biol 90(3):405–411. doi:10.1139/o11-089 PubMedCrossRefGoogle Scholar
  13. Haukland HH, Ulvatne H, Sandvik K, Vorland LH (2001) The antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm. FEBS Lett 508(3):389–393PubMedCrossRefGoogle Scholar
  14. Ho YH, Sung TC, Chen CS (2011) Lactoferricin B inhibits the phosphorylation of the two-component system response regulators BasR and CreB. Mol Cell Proteomics 11(4):M111-014720. doi:10.1074/mcp.M111.014720 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Huo L, Zhang K, Ling J, Peng Z, Huang X, Liu H, Gu L (2011) Antimicrobial and DNA-binding activities of the peptide fragments of human lactoferrin and histatin 5 against Streptococcus mutans. Arch Oral Biol 56(9):869–876. doi:10.1016/j.archoralbio.2011.02.004 PubMedCrossRefGoogle Scholar
  16. Lanie JA, Ng WL, Kazmierczak KM, Andrzejewski TM, Davidsen TM, Wayne KJ, Tettelin H, Glass JI, Winkler ME (2007) Genome sequence of Avery’s virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. J Bacteriol 189(1):38–51PubMedCentralPubMedCrossRefGoogle Scholar
  17. Leon-Sicairos N, Canizalez-Roman A, de la Garza M, Reyes-Lopez M, Zazueta-Beltran J, Nazmi K, Gomez-Gil B, Bolscher JG (2009) Bactericidal effect of lactoferrin and lactoferrin chimera against halophilic Vibrio parahaemolyticus. Biochimie 91(1):133–140. doi:10.1016/j.biochi.2008.06.009 PubMedCrossRefGoogle Scholar
  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408PubMedCrossRefGoogle Scholar
  19. Lopez-Soto F, Leon-Sicairos N, Nazmi K, Bolscher JG, de la Garza M (2010) Microbicidal effect of the lactoferrin peptides lactoferricin17–30, lactoferrampin265–284, and lactoferrin chimera on the parasite Entamoeba histolytica. Biometals 23(3):563–568. doi:10.1007/s10534-010-9295-3 PubMedCrossRefGoogle Scholar
  20. Lynch JP 3rd, Zhanel GG (2010) Streptococcus pneumoniae: epidemiology and risk factors, evolution of antimicrobial resistance, and impact of vaccines. Curr Opin Pulm Med 16(3):217–225. doi:10.1097/MCP.0b013e3283385653 PubMedGoogle Scholar
  21. Mirza S, Wilson L, Benjamin WH Jr, Novak J, Barnes S, Hollingshead SK, Briles DE (2011) Serine protease PrtA from Streptococcus pneumoniae plays a role in the killing of S. pneumoniae by apolactoferrin. Infect Immun 79(6):2440–2450. doi:10.1128/IAI.00489-10 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Mookherjee N, Hancock RE (2007) Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci 64(7–8):922–933. doi:10.1007/s00018-007-6475-6 PubMedCrossRefGoogle Scholar
  23. Moscoso M, Garcia E, Lopez R (2009) Pneumococcal biofilms. Int Microbiol 12(2):77–85PubMedGoogle Scholar
  24. Nijnik A, Hancock R (2009) Host defence peptides: antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections. Emerg Health Threats J 2:e1. doi:10.3134/ehtj.09.001 PubMedCentralPubMedGoogle Scholar
  25. Nunes MC, Shiri T, van Niekerk N, Cutland CL, Groome MJ, Koen A, von Gottberg A, de Gouveia L, Klugman KP, Adrian PV, Madhi SA (2013) Acquisition of Streptococcus pneumoniae in pneumococcal conjugate vaccine-naive South African children and their mothers. Pediatr Infect Dis J. doi:10.1097/INF.0b013e31828683a3 Google Scholar
  26. Orsi N (2004) The antimicrobial activity of lactoferrin: current status and perspectives. Biometals 17(3):189–196PubMedCrossRefGoogle Scholar
  27. Shak JR, Ludewick HP, Howery KE, Sakai F, Yi H, Harvey RM, Paton JC, Klugman KP, Vidal JE (2013) Novel role for the Streptococcus pneumoniae toxin pneumolysin in the assembly of biofilms. MBio 4(5):e00655-13. doi:10.1128/mBio.00655-13 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Shaper M, Hollingshead SK, Benjamin WH Jr, Briles DE (2004) PspA protects Streptococcus pneumoniae from killing by apolactoferrin, and antibody to PspA enhances killing of pneumococci by apolactoferrin [corrected]. Infect Immun 72(9):5031–5040. doi:10.1128/IAI.72.9.5031-5040.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Silva T, Abengozar MA, Fernandez-Reyes M, Andreu D, Nazmi K, Bolscher JG, Bastos M, Rivas L (2012) Enhanced leishmanicidal activity of cryptopeptide chimeras from the active N1 domain of bovine lactoferrin. Amino Acids 43(6):2265–2277. doi:10.1007/s00726-012-1304-0 PubMedCrossRefGoogle Scholar
  30. Silva T, Adao R, Nazmi K, Bolscher JG, Funari SS, Uhrikova D, Bastos M (2013) Structural diversity and mode of action on lipid membranes of three lactoferrin candidacidal peptides. Biochim Biophys Acta 1828(5):1329–1339. doi:10.1016/j.bbamem.2013.01.022 PubMedCrossRefGoogle Scholar
  31. Talekar SJ, Chochua S, Nelson K, Klugman KP, Quave CL, Vidal JE (2014) 220D-F2 from Rubus ulmifolius kills Streptococcus pneumoniae planktonic cells and pneumococcal biofilms. PLoS One 9(5):e97314. doi:10.1371/journal.pone.0097314 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Tomita M, Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K (1991) Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J Dairy Sci 74(12):4137–4142. doi:10.3168/jds.S0022-0302(91)78608-6 PubMedCrossRefGoogle Scholar
  33. Tomita M, Takase M, Wakabayashi H, Bellamy W (1994) Antimicrobial peptides of lactoferrin. Adv Exp Med Biol 357:209–218PubMedCrossRefGoogle Scholar
  34. Ulvatne H, Samuelsen O, Haukland HH, Kramer M, Vorland LH (2004) Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis. FEMS Microbiol Lett 237(2):377–384. doi:10.1016/j.femsle.2004.07.001 PubMedGoogle Scholar
  35. Valenti P, Berlutti F, Conte MP, Longhi C, Seganti L (2004) Lactoferrin functions: current status and perspectives. J Clin Gastroenterol 38(6 Suppl):S127–S129PubMedCrossRefGoogle Scholar
  36. van der Kraan MI, Groenink J, Nazmi K, Veerman EC, Bolscher JG, Nieuw Amerongen AV (2004) Lactoferrampin: a novel antimicrobial peptide in the N1-domain of bovine lactoferrin. Peptides 25(2):177–183. doi:10.1016/j.peptides.2003.12.006 PubMedCrossRefGoogle Scholar
  37. Vidal JE, Ohtani K, Shimizu T, McClane BA (2009) Contact with enterocyte-like Caco-2 cells induces rapid upregulation of toxin production by Clostridium perfringens type C isolates. Cell Microbiol 11(9):1306–1328. doi:10.1111/j.1462-5822.2009.01332.x PubMedCentralPubMedCrossRefGoogle Scholar
  38. Vidal JE, Ludewick HP, Kunkel RM, Zahner D, Klugman KP (2011) The LuxS-dependent quorum-sensing system regulates early biofilm formation by Streptococcus pneumoniae strain D39. Infect Immun 79(10):4050–4060. doi:10.1128/IAI.05186-11 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Vidal JE, Howery KE, Ludewick HP, Nava P, Klugman KP (2013) Quorum-sensing systems LuxS/autoinducer 2 and Com regulate Streptococcus pneumoniae biofilms in a bioreactor with living cultures of human respiratory cells. Infect Immun 81(4):1341–1353. doi:10.1128/IAI.01096-12 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Vogel HJ (2012) Lactoferrin, a bird’s eye view. Biochem Cell Biol 90(3):233–244. doi:10.1139/o2012-016 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Nidia León-Sicairos
    • 1
    • 5
  • Uriel A. Angulo-Zamudio
    • 1
  • Jorge E. Vidal
    • 2
  • Cynthia A. López-Torres
    • 1
  • Jan G. M. Bolscher
    • 3
  • Kamran Nazmi
    • 3
  • Ruth Reyes-Cortes
    • 1
  • Magda Reyes-López
    • 4
  • Mireya de la Garza
    • 4
  • Adrian Canizalez-Román
    • 1
  1. 1.Unidad de Investigación, Facultad de MedicinaUniversidad Autónoma de SinaloaCuliacánMexico
  2. 2.Hubert Department of Global Health, Rollins School of Public HealthEmory UniversityAtlantaUSA
  3. 3.Department of Oral Biochemistry ACTAUniversity of Amsterdam and VU UniversityAmsterdamThe Netherlands
  4. 4.Departamento de Biología CelularCINVESTAV-IPNMexicoMexico
  5. 5.Departamento de InvestigaciónHospital Pediátrico de SinaloaCuliacánMexico

Personalised recommendations