BioMetals

, Volume 27, Issue 5, pp 935–948 | Cite as

Bovine and human lactoferricin peptides: chimeras and new cyclic analogs

  • Mauricio Arias
  • Lindsey J. McDonald
  • Evan F. Haney
  • Kamran Nazmi
  • Jan G. M. Bolscher
  • Hans J. Vogel
Article

Abstract

Lactoferrin (LF) is an important antimicrobial and immune regulatory protein present in neutrophils and most exocrine secretions of mammals. The antimicrobial activity of LF has been related to the presence of an antimicrobial peptide sequence, called lactoferricin (LFcin), located in the N-terminal region of the protein. The antimicrobial activity of bovine LFcin is considerably stronger than the human version. In this work, chimera peptides combining segments of bovine and human LFcin were generated in order to study their antimicrobial activity and mechanism of action. In addition, the relevance of the conserved disulfide bridge and the resulting cyclic structure of both LFcins were analyzed by using “click chemistry” and sortase A-catalyzed cyclization of the peptides. The N-terminal region of bovine LFcin (residues 17–25 of bovine LF) proved to be very important for the antimicrobial activity of the chimera peptides against E. coli, when combined with the C-terminal region of human LFcin. Similarly the cyclic bovine LFcin analogs generated by “click chemistry” and sortase A preserved the antimicrobial activity of the original peptide, showing the significance of these two techniques in the design of cyclic antimicrobial peptides. The mechanism of action of bovine LFcin and its active derived peptides was strongly correlated with membrane leakage in E. coli and up to some extent with the ability to induce vesicle aggregation. This mechanism was also preserved under conditions of high ionic strength (150 mM NaCl) illustrating the importance of these peptides in a more physiologically relevant system.

Keywords

Lactoferrin Lactoferricin Peptide cyclization Click chemistry Sortase A 

Abbreviations

AMPs

Antimicrobial peptides

Bpg

Bishomopropargylglycin

ePG

Egg derived phosphatidylglycerol

ePE

Egg derived phosphatidylethanolamine

LF

Lactoferrin

LFcin

Lactoferricin

LPS

Lipopolysaccharides

LUVs

Large unilamellar vesicles

Lys(N2)

Azidolysine

MIC

Minimal inhibitory concentration

MHB

Mueller–Hinton broth

ONPG

Ortho-nitrophenyl-β-galactoside

PLE

Polar lipid extracts

TSB

Tryptic soy broth

References

  1. Alexander DB, Iigo M, Yamauchi K, Suzui M (2012) Lactoferrin: an alternative view of its role in human biological fluids. Biochem Cell Biol 90:279–306. doi:10.1139/O2012-013 PubMedCrossRefGoogle Scholar
  2. Ames BN, Neufeld EF, Ginsberg V (1966) Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol 8:115–118. doi:10.1016/0076-6879(66)08014-5 CrossRefGoogle Scholar
  3. Arnold RR, Cole MF, McGhee JR (1977) A bactericidal effect for human lactoferrin. Science 197:263–265PubMedCrossRefGoogle Scholar
  4. Arnold RR, Russell JE, Champion WJ et al (1982) Bactericidal activity of human lactoferrin: differentiation from the stasis of iron deprivation. Infect Immun 35:792–799PubMedCentralPubMedGoogle Scholar
  5. Baker EN, Baker HM (2009) A structural framework for understanding the multifunctional character of lactoferrin. Biochimie 91:3–10. doi:10.1016/j.biochi.2008.05.006 PubMedCrossRefGoogle Scholar
  6. Bellamy W, Takase M, Wakabayashi H et al (1992a) Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J Appl Bacteriol 73:472–479PubMedCrossRefGoogle Scholar
  7. Bellamy W, Takase M, Yamauchi K et al (1992b) Identification of the bactericidal domain of lactoferrin. Biochim Biophys Acta 1121:130–136PubMedCrossRefGoogle Scholar
  8. Bolscher JGM, Adão R, Nazmi K et al (2009) Bactericidal activity of LFchimera is stronger and less sensitive to ionic strength than its constituent lactoferricin and lactoferrampin peptides. Biochimie 91:123–132. doi:10.1016/j.biochi.2008.05.019 PubMedCrossRefGoogle Scholar
  9. Bolscher JGM, Oudhoff MJ, Nazmi K et al (2011) Sortase A as a tool for high-yield histatin cyclization. FASEB J 25:2650–2658. doi:10.1096/fj.11-182212 PubMedCrossRefGoogle Scholar
  10. Brock JH (1980) Lactoferrin in human milk: its role in iron absorption and protection against enteric infection in the newborn infant. Arch Dis Child 55:417–421PubMedCentralPubMedCrossRefGoogle Scholar
  11. Crommelin DJA (1984) Influence of lipid composition and ionic strength on the stability of liposomes. J Pharm Sci 73:1559–1563PubMedCrossRefGoogle Scholar
  12. Dathe M, Nikolenko H, Klose J, Bienert M (2004) Cyclization increases the antimicrobial activity and selectivity of arginine- and tryptophan-containing hexapeptides. Biochemistry 43:9140–9150. doi:10.1021/bi035948v PubMedCrossRefGoogle Scholar
  13. Domingues MM, Castanho MARB, Santos NC (2008) What can light scattering spectroscopy do for membrane-active peptide studies? J Pept Sci 14:394–400. doi:10.1002/psc PubMedCrossRefGoogle Scholar
  14. Drago-Serrano ME, de la Garza-Amaya M, Luna JS, Campos-Rodríguez R (2012) Lactoferrin–lipopolysaccharide (LPS) binding as key to antibacterial and antiendotoxic effects. Int Immunopharmacol 12:1–9. doi:10.1016/j.intimp.2011.11.002 PubMedCrossRefGoogle Scholar
  15. Epand RF, Pollard JE, Wright JO et al (2010) Depolarization, bacterial membrane composition, and the antimicrobial action of ceragenins. Antimicrob Agents Chemother 54:3708–3713. doi:10.1128/AAC.00380-10 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Gifford JL, Hunter HN, Vogel HJ (2005) Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol Life Sci 62:2588–2598. doi:10.1007/s00018-005-5373-z PubMedCrossRefGoogle Scholar
  17. Haney EF, Nazmi K, Bolscher JGM, Vogel HJ (2012) Structural and biophysical characterization of an antimicrobial peptide chimera comprised of lactoferricin and lactoferrampin. Biochim Biophys Acta 1818:762–775. doi:10.1016/j.bbamem.2011.11.023 PubMedCrossRefGoogle Scholar
  18. Haukland HH, Ulvatne H, Sandvik K, Vorland LH (2001) The antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm. FEBS Lett 508:389–393PubMedCrossRefGoogle Scholar
  19. Holland-Nell K, Meldal M (2011) Maintaining biological activity by using triazoles as disulfide bond mimetics. Angew Chemie 50:5204–5206. doi:10.1002/anie.201005846 CrossRefGoogle Scholar
  20. Hunter HN, Demcoe AR, Jenssen H et al (2005) Human lactoferricin is partially folded in aqueous solution and is better stabilized in a membrane mimetic solvent. Antimicrob Agents Chemother 49:3387–3395. doi:10.1128/AAC.49.8.3387 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Hwang PM, Zhou N, Shan X et al (1998) Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry 37:4288–4298. doi:10.1021/bi972323m PubMedCrossRefGoogle Scholar
  22. Jenssen H, Hancock REW (2009) Antimicrobial properties of lactoferrin. Biochimie 91:19–29. doi:10.1016/j.biochi.2008.05.015 PubMedCrossRefGoogle Scholar
  23. Krijgsveld J, Zaat SAJ, Van Veelen PA et al (2000) Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines. J Biol Chem 275:20374–20381PubMedCrossRefGoogle Scholar
  24. Latorre D, Berlutti F, Valenti P et al (2012) LF immunomodulatory strategies: mastering. Biochem Cell Biol 90:269–278. doi:10.1139/O11-059 PubMedCrossRefGoogle Scholar
  25. Legrand D, Elass E, Carpentier M, Mazurier J (2005) Lactoferrin: a modulator of immune and inflammatory responses. Cell Mol Life Sci 62:2549–2559. doi:10.1007/s00018-005-5370-2 PubMedCrossRefGoogle Scholar
  26. Li H, Aneja R, Chaiken I (2013) Click chemistry in peptide-based drug design. Molecules 18:9797–9817. doi:10.3390/molecules18089797 PubMedCrossRefGoogle Scholar
  27. Liu Y, Han F, Xie Y, Wang Y (2011) Comparative antimicrobial activity and mechanism of action of bovine lactoferricin-derived synthetic peptides. Biometals 24:1069–1078. doi:10.1007/s10534-011-9465-y PubMedCrossRefGoogle Scholar
  28. Nguyen LT, Chau JK, Perry NA et al (2010) Serum stabilities of short tryptophan- and arginine-rich antimicrobial peptide analogs. PLoS ONE 5:11–18. doi:10.1371/journal.pone.0012684 Google Scholar
  29. Nikaido H (1998) The role of outer membrane and efflux pumps in the resistance of gram-negative bacteria. Can we improve drug access? Drug Resist Updat 1:93–98. doi:10.1016/S1368-7646(98)80023-X PubMedCrossRefGoogle Scholar
  30. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656. doi:10.1128/MMBR.67.4.593 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Oren Z, Shai Y (2000) Cyclization of a cytolytic amphipathic alpha-helical peptide and its diastereomer: effect on structure, interaction with model membranes, and biological function. Biochemistry 39:6103–6114. doi:10.1021/bi992408i PubMedCrossRefGoogle Scholar
  32. Park CB, Yi KS, Matsuzaki K et al (2000) Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci USA 97:8245–8250. doi:10.1073/pnas.150518097 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Punna S, Kaltgrad E, Finn MG (2005) “Clickable” agarose for affinity chromatography. Bioconjug Chem 16:1536–1541. doi:10.1021/bc0501496 PubMedCrossRefGoogle Scholar
  34. Sánchez L, Calvo M, Brock JH (1992) Biological role of lactoferrin. Arch Dis Child 67:657–661PubMedCentralPubMedCrossRefGoogle Scholar
  35. Strøm MB, Haug BE, Rekdal Ø et al (2002) Important structural features of 15-residue lactoferricin derivatives and methods for improvement of antimicrobial activity. Biochem Cell Biol 80:65–74. doi:10.1139/O01-236 PubMedCrossRefGoogle Scholar
  36. Tomita M, Takase M, Bellamy W, Shimamura S (1994) A review: the active peptide of lactoferrin. Acta Paediatr Jpn 36:585–591PubMedCrossRefGoogle Scholar
  37. Ulvatne H, Haukland HH, Olsvik O, Vorland LH (2001) Lactoferricin B causes depolarization of the cytoplasmic membrane of Escherichia coli ATCC 25922 and fusion of negatively charged liposomes. FEBS Lett 492:62–65PubMedCrossRefGoogle Scholar
  38. Ulvatne H, Samuelsen Ø, Haukland HH et al (2004) Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis. FEMS Microbiol Lett 237:377–384. doi:10.1016/j.femsle.2004.07.001 PubMedGoogle Scholar
  39. Umeyama M, Kira A, Nishimura K, Naito A (2006) Interactions of bovine lactoferricin with acidic phospholipid bilayers and its antimicrobial activity as studied by solid-state NMR. Biochim Biophys Acta 1758:1523–1528. doi:10.1016/j.bbamem.2006.06.014 PubMedCrossRefGoogle Scholar
  40. Valenti P, Antonini G (2005) Lactoferrin: an important host defence against microbial and viral attack. Cell Mol Life Sci 62:2576–2587. doi:10.1007/s00018-005-5372-0 PubMedCrossRefGoogle Scholar
  41. Visca P, Dalmastri C, Verzili D et al (1990) Interaction of lactoferrin with Escherichia coli cells and correlation with antibacterial activity. Med Microbiol Immunol 179:323–333PubMedCrossRefGoogle Scholar
  42. Vogel HJ (2012) Lactoferrin, a bird’s eye view. Biochem Cell Biol 90:233–244. doi:10.1139/O2012-016 PubMedCrossRefGoogle Scholar
  43. Vorland LH, Ulvatne H, Andersen J et al (1998) Lactoferricin of bovine origin is more active than lactoferricins of human, murine and caprine origin. Scand J Infect Dis 30:513–517PubMedCrossRefGoogle Scholar
  44. White CJ, Yudin AK (2011) Contemporary strategies for peptide macrocyclization. Nat Chem 3:509–524. doi:10.1038/nchem.1062 PubMedCrossRefGoogle Scholar
  45. Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175. doi:10.1038/nprot.2007.521 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mauricio Arias
    • 1
  • Lindsey J. McDonald
    • 1
  • Evan F. Haney
    • 1
    • 3
  • Kamran Nazmi
    • 2
  • Jan G. M. Bolscher
    • 2
  • Hans J. Vogel
    • 1
  1. 1.Department of Biological Sciences, Biochemistry Research GroupUniversity of CalgaryCalgaryCanada
  2. 2.Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and VU University AmsterdamAmsterdamThe Netherlands
  3. 3.Center for Microbial Diseases and Immunity Research, Dr. R.E.W. (Bob) Hancock Lab.University of British ColumbiaVancouverCanada

Personalised recommendations