, Volume 27, Issue 4, pp 633–644 | Cite as

Analysis of the draft genome of Pseudomonas fluorescens ATCC17400 indicates a capacity to take up iron from a wide range of sources, including different exogenous pyoverdines

  • Lumeng Ye
  • Sandra Matthijs
  • Josselin Bodilis
  • Falk Hildebrand
  • Jeroen Raes
  • Pierre CornelisEmail author


All fluorescent pseudomonads (Pseudomonas aeruginosa, P. putida, P. fluorescens, P. syringae and others) are known to produce the high-affinity peptidic yellow-green fluorescent siderophore pyoverdine. These siderophores have peptide chains that are quite diverse and more than 50 pyoverdine structures have been elucidated. In the majority of the cases, a Pseudomonas species is also able to produce a second siderophore of lower affinity for iron. Pseudomonas fluorescens ATCC 17400 has been shown to produce a unique second siderophore, (thio)quinolobactin, which has an antimicrobial activity against the phytopathogenic Oomycete Pythium debaryanum. We show that this strain has the capacity to utilize 16 different pyoverdines, suggesting the presence of several ferripyoverdine receptors. Analysis of the draft genome of P. fluorescens ATCC 17400 confirmed the presence of 55 TonB-dependent receptors, the largest so far for Pseudomonas, among which 15 are predicted to be ferripyoverdine receptors (Fpv). Phylogenetic analysis revealed the presence of two different clades containing ferripyoverdine receptors, with sequences similar to the P. aeruginosa type II FpvA forming a separate cluster. Among the other receptors we confirmed the presence of the QbsI (thio)quinolobactin receptor, an ferri-achromobactin and an ornicorrugatin receptor, several catecholate and four putative heme receptors. Twenty five of the receptors genes were found to be associated with genes encoding extracytoplasmic sigma factors (ECF σ) and transmembrane anti-σ sensors.


Pseudomonas fluorescens Siderophores Pyoverdines Quinolobactin Heme TonB-dependent receptors 

Supplementary material

10534_2014_9734_MOESM1_ESM.doc (170 kb)
Supplementary material 1 (DOC 169 kb)


  1. Beare PA, For RJ, Martin LW, Lamont IL (2003) Siderophore-mediated cell signalling in Pseudomonas aeruginosa: divergent pathways regulate virulence factor production and siderophore receptor synthesis. Mol Microbiol 47:195–207PubMedCrossRefGoogle Scholar
  2. Beiderbeck H, Taraz K, Meyer JM (1999) Revised structures of the pyoverdins from Pseudomonas putida CFBP 2461 and from Pseudomonas fluorescens CFBP 2392. Biometals 12:331–338PubMedCrossRefGoogle Scholar
  3. Berti AD, Thomas MG (2009) Analysis of achromobactin biosynthesis by Pseudomonas syringae pv. syringae B728a. J Bacteriol 191:4594–4604. doi: 10.1128/JB.00457-09 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bodilis J et al (2004) Phylogenetic relationships between environmental and clinical isolates of Pseudomonas fluorescens and related species deduced from 16S rRNA gene and OprF protein sequences. Syst Appl Microbiol 27:93–108. doi: 10.1078/0723-2020-00253 PubMedCrossRefGoogle Scholar
  5. Bodilis J, Hedde M, Orange N, Barray S (2006) OprF polymorphism as a marker of ecological niche in Pseudomonas. Environ Microbiol 8:1544–1551. doi: 10.1111/j.1462-2920.2006.01045.x PubMedCrossRefGoogle Scholar
  6. Bodilis J et al (2009) Distribution and evolution of ferripyoverdine receptors in Pseudomonas aeruginosa. Environ Microbiol 11:2123–2135. doi: 10.1111/j.1462-2920.2009.01932.x PubMedCrossRefGoogle Scholar
  7. Boetzer M, Pirovano W (2012) Toward almost closed genomes with GapFiller. Genome Biol 13:R56. doi: 10.1186/gb-2012-13-6-r56 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W (2011) Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27:578–579. doi: 10.1093/bioinformatics/btq683 PubMedCrossRefGoogle Scholar
  9. Briskot G, Taraz K, Budzikiewicz H (1989) Bacterial constituents. Pyoverdin-type siderophores from Pseudomonas aeruginosa. Liebigs Annalen Der Chemie 37:375–384CrossRefGoogle Scholar
  10. Budzikiewicz H (1997) Siderophores of fluorescent pseudomonads. Z Naturforsch C 52:713–720PubMedGoogle Scholar
  11. Bultreys A, Gheysen I, Wathelet B, Schafer M, Budzikiewicz H (2004) The pyoverdins of Pseudomonas syringae and Pseudomonas cichorii. Z Naturforsch C 59:613–618PubMedGoogle Scholar
  12. Bultreys A, Gheysen I, de Hoffmann E (2006) Yersiniabactin production by Pseudomonas syringae and Escherichia coli, and description of a second yersiniabactin locus evolutionary group. Appl Environ Microbiol 72:3814–3825. doi: 10.1128/AEM.00119-06 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Cheng X, de Bruijn I, van der Voort M, Loper JE, Raaijmakers JM (2013) The Gac regulon of Pseudomonas fluorescens SBW25. Environ Microbiol Rep 5:608–619. doi: 10.1111/1758-2229.12061 PubMedCrossRefGoogle Scholar
  14. Cornelis P (2010) Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86:1637–1645. doi: 10.1007/s00253-010-2550-2 PubMedCrossRefGoogle Scholar
  15. Cornelis P, Bodilis J (2009) A survey of TonB-dependent receptors in fluorescent pseudomonads. Environ Microbiol Rep 1:256–262PubMedCrossRefGoogle Scholar
  16. Cornelis P, Matthijs S (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4:787–798PubMedCrossRefGoogle Scholar
  17. Cornelis P, Hohnadel D, Meyer JM (1989) Evidence for different pyoverdine-mediated iron uptake systems among Pseudomonas aeruginosa strains. Infect Immun 57:3491–3497PubMedCentralPubMedGoogle Scholar
  18. Cornelis P, Matthijs S, Van Oeffelen L (2009) Iron uptake regulation in Pseudomonas aeruginosa. Biometals 22:15–22. doi: 10.1007/s10534-008-9193-0 PubMedCrossRefGoogle Scholar
  19. Cox CD, Rinehart KL Jr, Moore ML, Cook JC Jr (1981) Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci USA 78:4256–4260PubMedCentralPubMedCrossRefGoogle Scholar
  20. de Chial M et al (2003) Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa. Microbiology 149:821–831PubMedCrossRefGoogle Scholar
  21. Demange P, Bateman A, Macleod JK, Dell A, Abdallah MA (1990) Bacterial siderophores: unusual 3,4,5,6-tetrahydropyrimidine-based amino-acids in pyoverdins from Pseudomonas fluorescens. Tetrahedron Lett 31:7611–7614. doi: 10.1016/S0040-4039(00)97312-X CrossRefGoogle Scholar
  22. Draper RC, Martin LW, Beare PA, Lamont IL (2011) Differential proteolysis of sigma regulators controls cell-surface signalling in Pseudomonas aeruginosa. Mol Microbiol 82:1444–1453. doi: 10.1111/j.1365-2958.2011.07901.x PubMedCrossRefGoogle Scholar
  23. Ghysels B et al (2004) FpvB, an alternative type I ferripyoverdine receptor of Pseudomonas aeruginosa. Microbiology 150:1671–1680. doi: 10.1099/mic.0.27035-0 PubMedCrossRefGoogle Scholar
  24. Ghysels B et al (2005) The Pseudomonas aeruginosa pirA gene encodes a second receptor for ferrienterobactin and synthetic catecholate analogues. FEMS Microbiol Lett 246:167–174. doi: 10.1016/j.femsle.2005.04.010 PubMedCrossRefGoogle Scholar
  25. Gipp S, Hahn J, Taraz K, Budzikiewicz H (1991) Chemical-substances from bacteria. 47. 2 pyoverdins from Pseudomonas aeruginosa R. Z Naturforsch C 46:534–541Google Scholar
  26. Goldberg JB (2000) Pseudomonas: global bacteria. Trends Microbiol 8:55–57PubMedCrossRefGoogle Scholar
  27. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224. doi: 10.1093/molbev/msp259 PubMedCrossRefGoogle Scholar
  28. Hartney SL, Mazurier S, Kidarsa TA, Quecine MC, Lemanceau P, Loper JE (2011) TonB-dependent outer-membrane proteins and siderophore utilization in Pseudomonas fluorescens Pf-5. Biometals 24:193–213. doi: 10.1007/s10534-010-9385-2 PubMedCrossRefGoogle Scholar
  29. Hartney SL et al (2013) Ferric-pyoverdine recognition by Fpv outer membrane proteins of Pseudomonas protegens Pf-5. J Bacteriol 195:765–776. doi: 10.1128/JB.01639-12 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Hohlneicher U, Hartmann R, Taraz K, Budzikiewicz H (1995) Bacterial constituents. 62. Pyoverdin, ferribactin, azotobactin: a New triad of siderophores from Pseudomonas chlororaphis Atcc-9446 and its relation to Pseudomonas fluorescens Atcc-13525. Z Naturforsch C 50:337–344Google Scholar
  31. Hohnadel D, Meyer JM (1988) Specificity of pyoverdine-mediated iron uptake among fluorescent Pseudomonas strains. J Bacteriol 170:4865–4873PubMedCentralPubMedGoogle Scholar
  32. Julich M, Taraz K, Budzikiewicz H, Geoffroy V, Meyer JM, Gardan L (2001) The structure of the pyoverdin isolated from various Pseudomonas syringae pathovars. Z Naturforsch C 56:687–694PubMedGoogle Scholar
  33. Lewis TA et al (2004) Physiological and molecular genetic evaluation of the dechlorination agent, pyridine-2,6-bis(monothiocarboxylic acid) (PDTC) as a secondary siderophore of Pseudomonas. Environ Microbiol 6:159–169PubMedCrossRefGoogle Scholar
  34. Lindow SE, Suslow TV (2003) Temporal dynamics of the biocontrol agent Pseudomonas fluorescens strain A506 in flowers in inoculated pear trees. Phytopathology 93:727–737. doi: 10.1094/PHYTO.2003.93.6.727 PubMedCrossRefGoogle Scholar
  35. Loper JE et al (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8:e1002784. doi: 10.1371/journal.pgen.1002784 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Matthijs S et al (2004) The Pseudomonas siderophore quinolobactin is synthesized from xanthurenic acid, an intermediate of the kynurenine pathway. Mol Microbiol 52:371–384. doi: 10.1111/j.1365-2958.2004.03999.x PubMedCrossRefGoogle Scholar
  37. Matthijs S, Tehrani KA, Laus G, Jackson RW, Cooper RM, Cornelis P (2007) Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environ Microbiol 9:425–434. doi: 10.1111/j.1462-2920.2006.01154.x PubMedCrossRefGoogle Scholar
  38. Matthijs S, Budzikiewicz H, Schafer M, Wathelet B, Cornelis P (2008) Ornicorrugatin, a new siderophore from Pseudomonas fluorescens AF76. Z Naturforsch C 63:8–12PubMedGoogle Scholar
  39. Matthijs S et al (2009) Siderophore-mediated iron acquisition in the entomopathogenic bacterium Pseudomonas entomophila L48 and its close relative Pseudomonas putida KT2440. Biometals 22:951–964. doi: 10.1007/s10534-009-9247-y PubMedCrossRefGoogle Scholar
  40. Matthijs S et al (2013) Evaluation of oprI and oprL genes as molecular markers for the genus Pseudomonas and their use in studying the biodiversity of a small Belgian River. Res Microbiol 164:254–261. doi: 10.1016/j.resmic.2012.12.001 PubMedCrossRefGoogle Scholar
  41. Mendes R et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100. doi: 10.1126/science.1203980 PubMedCrossRefGoogle Scholar
  42. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663. doi: 10.1111/1574-6976.12028 PubMedCrossRefGoogle Scholar
  43. Mercado-Blanco J, van der Drift KM, Olsson PE, Thomas-Oates JE, van Loon LC, Bakker PA (2001) Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. J Bacteriol 183:1909–1920. doi: 10.1128/JB.183.6.1909-1920.2001 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Meyer JM (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174:135–142PubMedCrossRefGoogle Scholar
  45. Meyer JM et al (1997) Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. Microbiology 143:35–43PubMedCrossRefGoogle Scholar
  46. Meyer JM, Gruffaz C, Raharinosy V, Bezverbnaya I, Schafer M, Budzikiewicz H (2008) Siderotyping of fluorescent Pseudomonas: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals 21:259–271. doi: 10.1007/s10534-007-9115-6 PubMedCrossRefGoogle Scholar
  47. Moon CD, Zhang XX, Matthijs S, Schafer M, Budzikiewicz H, Rainey PB (2008) Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25. BMC Microbiol 8:7. doi: 10.1186/1471-2180-8-7 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Mossialos D et al (2000) Quinolobactin, a new siderophore of Pseudomonas fluorescens ATCC 17400, the production of which is repressed by the cognate pyoverdine. Appl Environ Microbiol 66:487–492PubMedCentralPubMedCrossRefGoogle Scholar
  49. Ongena M et al (2001) The pyoverdin of Pseudomonas fluorescens BTP2, a novel structural type. Tetrahedron Lett 42:5849–5851. doi: 10.1016/S0040-4039(01)01077-2 CrossRefGoogle Scholar
  50. Preston GM, Bertrand N, Rainey PB (2001) Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Mol Microbiol 41:999–1014PubMedCrossRefGoogle Scholar
  51. Rainey PB, Bailey MJ (1996) Physical and genetic map of the Pseudomonas fluorescens SBW25 chromosome. Mol Microbiol 19:521–533PubMedCrossRefGoogle Scholar
  52. Ravel J, Cornelis P (2003) Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol 11:195–200PubMedCrossRefGoogle Scholar
  53. Redondo-Nieto M et al (2013) Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genomics 14:54. doi: 10.1186/1471-2164-14-54 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Schlegel K et al (2001) The pyoverdins of Pseudomonas sp. 96-312 and 96-318. Z Naturforsch C 56:680–686PubMedGoogle Scholar
  55. Smith EE, Sims EH, Spencer DH, Kaul R, Olson MV (2005) Evidence for diversifying selection at the pyoverdine locus of Pseudomonas aeruginosa. J Bacteriol 187:2138–2147. doi: 10.1128/JB.187.6.2138-2147.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505. doi: 10.1016/S1074-5521(99)80082-9 PubMedCrossRefGoogle Scholar
  57. Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271PubMedCrossRefGoogle Scholar
  58. Stockwell VO et al (2013) pA506, a conjugative plasmid of the plant epiphyte Pseudomonas fluorescens A506. Appl Environ Microbiol 79:5272–5282. doi: 10.1128/AEM.01354-13 PubMedCentralPubMedCrossRefGoogle Scholar
  59. Sultana R, Siddiqui BS, Taraz K, Budzikiewicz H, Meyer JM (2000) A pyoverdine from Pseudomonas putida CFML 90-51 with a Lys epsilon-amino link in the peptide chain. Biometals 13:147–152PubMedCrossRefGoogle Scholar
  60. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi: 10.1093/molbev/msr121 PubMedCentralPubMedCrossRefGoogle Scholar
  61. Tappe R, Taraz K, Budzikiewicz H, Meyer JM, Lefevre JF (1993) Bacterial Constituents. 54. Structure Elucidation of a Pyoverdin Produced by Pseudomonas aeruginosa ATCC-27853. J Prakt Chem 335:83–87. doi: 10.1002/prac.19933350113 CrossRefGoogle Scholar
  62. Teintze M, Leong J (1981) Structure of Pseudobactin-A, a second siderophore from plant-growth promoting Pseudomonas-B10. Biochemistry 20:6457–6462. doi: 10.1021/Bi00525a026 PubMedCrossRefGoogle Scholar
  63. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCentralPubMedCrossRefGoogle Scholar
  64. Tummler B, Cornelis P (2005) Pyoverdine receptor: a case of positive Darwinian selection in Pseudomonas aeruginosa. J Bacteriol 187:3289–3292. doi: 10.1128/JB.187.10.3289-3292.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  65. Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15:22–30. doi: 10.1016/j.tim.2006.11.004 PubMedCrossRefGoogle Scholar
  66. Wandersman C, Delepelaire P (2012) Haemophore functions revisited. Mol Microbiol 85:618–631. doi: 10.1111/j.1365-2958.2012.08136.x PubMedCrossRefGoogle Scholar
  67. Winsor GL et al (2009) Pseudomonas genome database: facilitating user-friendly, comprehensive comparisons of microbial genomes. Nucleic Acids Res 37:D483–D488. doi: 10.1093/nar/gkn861 PubMedCentralPubMedCrossRefGoogle Scholar
  68. Youard ZA, Mislin GL, Majcherczyk PA, Schalk IJ, Reimmann C (2007) Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin. J Biol Chem 282:33553–35546. doi: 10.1074/jbc.M707039200 CrossRefGoogle Scholar
  69. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829. doi: 10.1101/gr.074492.107gr.074492.107 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Lumeng Ye
    • 1
  • Sandra Matthijs
    • 2
  • Josselin Bodilis
    • 3
  • Falk Hildebrand
    • 1
  • Jeroen Raes
    • 1
  • Pierre Cornelis
    • 1
    Email author
  1. 1.Department of Bioengineering Sciences, Research Group Microbiology, VIB Structural BiologyVrije Universiteit BrusselBrusselsBelgium
  2. 2.Institut de Recherches Microbiologiques-WiameBrusselsBelgium
  3. 3.Laboratoire de Microbiologie Signaux et MicroenvironnementUFR des Sciences - Université de RouenMont Saint AignanFrance

Personalised recommendations