BioMetals

, Volume 27, Issue 3, pp 559–573 | Cite as

Functional analysis of pyochelin-/enantiopyochelin-related genes from a pathogenicity island of Pseudomonas aeruginosa strain PA14

  • Alessandro Maspoli
  • Nicolas Wenner
  • Gaëtan L. A. Mislin
  • Cornelia Reimmann
Article

Abstract

Genomic islands are foreign DNA blocks inserted in so-called regions of genomic plasticity (RGP). Depending on their gene content, they are classified as pathogenicity, symbiosis, metabolic, fitness or resistance islands, although a detailed functional analysis is often lacking. Here we focused on a 34-kb pathogenicity island of Pseudomonas aeruginosa PA14 (PA14GI-6), which is inserted at RGP5 and carries genes related to those for pyochelin/enantiopyochelin biosynthesis. These enantiomeric siderophores of P. aeruginosa and certain strains of Pseudomonas protegens are assembled by a thiotemplate mechanism from salicylate and two molecules of cysteine. The biochemical function of several proteins encoded by PA14GI-6 was investigated by a series of complementation analyses using mutants affected in potential homologs. We found that PA14_54940 codes for a bifunctional salicylate synthase/salicyl-AMP ligase (for generation and activation of salicylate), that PA14_54930 specifies a dihydroaeruginoic acid (Dha) synthetase (for coupling salicylate with a cysteine-derived thiazoline ring), that PA14_54910 produces a type II thioesterase (for quality control), and that PA14_54880 encodes a serine O-acetyltransferase (for increased cysteine availability). The structure of the PA14GI-6-specified metabolite was determined by mass spectrometry, thin-layer chromatography, and HPLC as (R)-Dha, an iron chelator with antibacterial, antifungal and antitumor activity. The conservation of this genomic island in many clinical and environmental P. aeruginosa isolates of different geographical origin suggests that the ability for Dha production may confer a selective advantage to its host.

Keywords

Genomic island Siderophore Pseudomonas Pyochelin Dihydroaeruginoic acid 

Supplementary material

10534_2014_9729_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOC 20 kb)

References

  1. Bachmann BJ (1987) Derivations and genotypes of some mutant derivatives of Escherichia coli K-12. In: Neidbordt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, vol 2. American Society for Microbiology, Washington, pp 1190–1219Google Scholar
  2. Carmi R, Carmeli S, Levy E, Gough FJ (1994) (+)-(S)-dihydroaeruginoic acid, an inhibitor of Septoria tritici and other phytopathogenic fungi and bacteria, produced by Pseudomonas fluorescens. J Nat Prod 57:1200–1205PubMedCrossRefGoogle Scholar
  3. Cox CD, Rinehart KL, Moore ML, Cook JC (1981) Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci USA 78:4256–4260PubMedCentralPubMedCrossRefGoogle Scholar
  4. Cuppels DA, Stipanovic RD, Stoessl A, Stothers JB (1987) The constitution and properties of a pyochelin–zinc complex. Can J Chem 65:2126–2130CrossRefGoogle Scholar
  5. D’Argenio DA, Gallagher LA, Berg CA, Manoil C (2001) Drosophila as a model host for Pseudomonas aeruginosa infection. J Bacteriol 183:1466–1471PubMedCentralPubMedCrossRefGoogle Scholar
  6. Du L, Lou L (2010) PKS and NRPS release mechanisms. Nat Prod Rep 27:255–278PubMedCrossRefGoogle Scholar
  7. Elliot CA, Kelly KF, Bonna RL, Wardlaw TR, Burns ER (1988) In vitro antiproliferative activity of 2′-(2-hydroxyphenyl)-2′thiazoline-4′carboxylic acid and its methyl ester on L1210 and P388 murine neoplasms. Cancer Chemother Pharm 21:233–236CrossRefGoogle Scholar
  8. Farinha MA, Kropinski AM (1990) High efficiency electroporation of Pseudomonas aeruginosa using frozen cell suspensions. FEMS Microbiol Lett 58:221–225PubMedGoogle Scholar
  9. Gallagher LA, Manoil C (2001) Pseudomonas aeruginosa kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 183:6207–6214PubMedCentralPubMedCrossRefGoogle Scholar
  10. Gamper M, Ganter B, Polito MR, Haas D (1992) RNA processing modulates the expression of the arcDABC operon in Pseudomonas aeruginosa. J Mol Biol 226:943–957PubMedCrossRefGoogle Scholar
  11. Heeb S, Blumer C, Haas D (2002) Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol 184:1046–1056PubMedCentralPubMedCrossRefGoogle Scholar
  12. Hoegy F, Lee X, Noel S, Rognan D, Mislin GL, Reimmann C, Schalk IJ (2009) Stereospecificity of the siderophore pyochelin outer membrane transporters in fluorescent pseudomonads. J Biol Chem 284:14949–14957PubMedCentralPubMedCrossRefGoogle Scholar
  13. Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW (2008) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33:376–393PubMedCentralPubMedCrossRefGoogle Scholar
  14. Klockgether J, Cramer N, Wiehlmann L, Davenport CF, Tümmler B (2011) Pseudomonas aeruginosa genomic structure and diversity. Front Microbiol 2:150PubMedCentralPubMedGoogle Scholar
  15. Kredich NM (1996) Biosynthesis of cysteine. In: Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Raznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, pp 515–527Google Scholar
  16. Laville J, Blumer C, Von Schroetter C, Gaia V, Défago G, Keel C, Haas D (1998) Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. J Bacteriol 180:3187–3196PubMedCentralPubMedGoogle Scholar
  17. Lee DG, Urbach JM, Wu G, Liberati NT, Feinbaum RL, Miyata S, Diggins LT, He J, Saucier M, Déziel E, Friedman L, Li L, Grills G, Montgomery K, Kucherlapati R, Rahme LG, Ausubel FM (2006) Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7:R90PubMedCentralPubMedCrossRefGoogle Scholar
  18. Lin P-C, Youard ZA, Reimmann C (2013) In vitro-binding of the natural siderophore enantiomers pyochelin and enantiopyochelin to their AraC-type regulators PchR in Pseudomonas. Biometals 26:1067–1073PubMedCrossRefGoogle Scholar
  19. Lyczak JB, Cannon CL, Pier GB (2002) Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15:194–222PubMedCentralPubMedCrossRefGoogle Scholar
  20. Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM, Koehrsen M, Rokas A, Yandava CN, Engels R, Zeng E, Olavarietta R, Doud M, Smith RS, Montgomery P, White JR, Godfrey PA, Kodira C, Birren B, Galagan JE, Lory S (2008) Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci USA 105:3100–3105PubMedCentralPubMedCrossRefGoogle Scholar
  21. Maurhofer M, Reimmann C, Schmidli-Sacherer P, Heeb S, Haas D, Défago G (1998) Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88:678–684PubMedCrossRefGoogle Scholar
  22. Michel L, Bachelard A, Reimmann C (2007) Ferripyochelin uptake genes are involved in pyochelin-mediated signalling in Pseudomonas aeruginosa. Microbiology 153:1508–1518PubMedCrossRefGoogle Scholar
  23. Patel HM, Tao J, Walsh CT (2003) Epimerization of an L-cysteinyl to a D-cysteinyl residue during thiazoline ring formation in siderophore chain elongation by pyochelin synthetase from Pseudomonas aeruginosa. Biochemistry 42:10514–10527PubMedCrossRefGoogle Scholar
  24. Phoebe CH Jr, Combie J, Albert FG, Van Tran K, Cabrera J, Correira HJ, Guo Y, Lindermuth J, Rauert N, Galbraith W, Selitrennikoff CP (2001) Extremophilic orgainisms as and unexplored source of antifungal compounds. J Antibiot 54:56–65PubMedCrossRefGoogle Scholar
  25. Plotnikova JM, Rahme LG, Ausubel FM (2000) Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis. Plant Physiol 124:1766–1774PubMedCentralPubMedCrossRefGoogle Scholar
  26. Pukatzki S, Kressin RH, Mekalanos JJ (2002) The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc Natl Acad Sci USA 99:3159–3164PubMedCentralPubMedCrossRefGoogle Scholar
  27. Quadri LEN, Keating TA, Patel HM, Walsh CT (1999) Assembly of the Pseudomonas aeruginosa nonribosomal peptide siderophore pyochelin: in vitro reconstitution of aryl-4,2-bisthiazoline synthetase activity from PchD, PchE and PchF. Biochemistry 38:14941–14954PubMedCrossRefGoogle Scholar
  28. Reimmann C (2012) Inner-membrane transporters for the siderophores pyochelin in Pseudomonas aeruginosa and enantio-pyochelin in Pseudomonas fluorescens display different enantioselectivities. Microbiology 158:1317–1324PubMedCrossRefGoogle Scholar
  29. Reimmann C, Serino L, Beyeler M, Haas D (1998) Dihydroaeruginoic acid synthetase and pyochelin synthetase, products of the pchEF genes, are induced by extracellular pyochelin in Pseudomonas aeruginosa. Microbiology 144:3135–3148PubMedCrossRefGoogle Scholar
  30. Reimmann C, Patel HM, Serino L, Barone M, Walsh CT, Haas D (2001) Essential PchG-dependent reduction in pyochelin biosynthesis of Pseudomonas aeruginosa. J Bacteriol 183:813–820PubMedCentralPubMedCrossRefGoogle Scholar
  31. Reimmann C, Patel HM, Walsh CT, Haas D (2004) PchC thioesterase optimizes nonribosomal biosynthesis of the peptide siderophore pyochelin in Pseudomonas aeruginosa. J Bacteriol 186:6367–6373PubMedCentralPubMedCrossRefGoogle Scholar
  32. Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual. Cold Spring Laboratory Press, NYGoogle Scholar
  33. Schmidt KD, Tümmler B, Römling U (1996) Comparative genome mapping of Pseudomonas aeruginosa PAO with P. aeruginosa C, which belongs to a major clone in cystic fibrosis patients and aquatic habitats. J Bacteriol 178:85–93PubMedCentralPubMedGoogle Scholar
  34. Schnider U, Keel C, Blumer C, Troxler J, Défago G, Haas D (1995) Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities. J Bacteriol 177:5387–5392PubMedCentralPubMedGoogle Scholar
  35. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56PubMedCrossRefGoogle Scholar
  36. Seipke RF, Song L, Bicz J, Laskaris P, Yaxley AM, Challis GL, Loria R (2011) The plant pathogen Streptomyces scabies 87-22 has a functional pyochelin biosynthetic pathway that is regulated by TetR- and AfsR-family proteins. Microbiology 157:2681–2693PubMedCrossRefGoogle Scholar
  37. Serino L, Reimmann C, Visca P, Beyeler M, Della Chiesa V, Haas D (1997) Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa. J Bacteriol 179:248–257PubMedCentralPubMedGoogle Scholar
  38. Song L, Zhang XH (2009) Innovation for ascertaining genomic islands in PAO1 and PA14 of Pseudomonas aeruginosa. Chin Sci Bull 54:3991–3999CrossRefGoogle Scholar
  39. Song L, Zhang XH (2011) Acurate localization and excision of genomic islands in four strains of Pseudomonas aeruginosa and Pseudomonas fluorescens. Chin Sci Bull 56:987–995CrossRefGoogle Scholar
  40. Stanisich VA, Holloway BW (1972) A mutant sex factor of Pseudomonas aeruginosa. Genet Res 19:91–108PubMedCrossRefGoogle Scholar
  41. Sturgill G, Toutain CM, Komperda J, O’Toole GA, Rather PN (2004) Role of CysE in production of an extracellular signaling molecule in Providencia stuartii and Escherichia coli: loss of cysE enhances biofilm formation in Escherichia coli. J Bacteriol 186:7610–7617PubMedCentralPubMedCrossRefGoogle Scholar
  42. Terano H, Nomoto K, Takase S (2002) Siderophore production and induction of iron-regulated proteins by a microorganism from rhizosphere of barley. Biosci Biotechnol Biochem 66:2471–2473PubMedCrossRefGoogle Scholar
  43. Thomas MS (2007) Iron acquisition mechanisms of the Burkholderia cepacia complex. Biometals 20:431–452PubMedCrossRefGoogle Scholar
  44. Van Delden C, Iglewski B (1998) Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560PubMedCentralPubMedCrossRefGoogle Scholar
  45. Visca P, Serino L, Orsi N (1992) Isolation and characterization of Pseudomonas aeruginosa mutants blocked in the synthesis of pyoverdin. J Bacteriol 174:5727–5731PubMedCentralPubMedGoogle Scholar
  46. Voisard C, Rella M, Haas D (1988) Conjugative transfer of plasmid RP1 to soil isolates of Pseudomonas fluorescens is facilitated by certain large RP1 deletions. FEMS Microbiol Lett 55:9–14CrossRefGoogle Scholar
  47. Voisard C, Bull C, Keel C, Laville J, Maurhofer M, Schnider U, Défago G, Haas D (1994) Biocontrol of root diseases by Pseudomonas fluorescens CHA0: current concepts and experimental approaches. In: O’Gara F, Dowling FDL, Boesten B (eds) Molecular ecology of rhizosphere microorganisms, pp 67–69Google Scholar
  48. Watson AA, Alm RA, Mattick JS (1996) Construction of improved vectors for protein production in Pseudomonas aeruginosa. Gene 172:163–164PubMedCrossRefGoogle Scholar
  49. Ye RW, Haas D, Ka JO, Krishnapillai V, Zimmermann A, Baird C, Tiedje JM (1995) Anaerobic activation of the entire denitrification pathway in Pseudomonas aeruginosa requires Anr, an analog of Fnr. J Bacteriol 177:3606–3609PubMedCentralPubMedGoogle Scholar
  50. Youard ZA, Reimmann C (2010) Stereospecific recognition of pyochelin and enantio-pyochelin by the PchR proteins in fluorescent pseudomonads. Microbiology 156:1772–1782PubMedCrossRefGoogle Scholar
  51. Youard ZA, Mislin GL, Majcherczyk PA, Schalk IJ, Reimmann C (2007) Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin. J Biol Chem 282:35546–35553PubMedCrossRefGoogle Scholar
  52. Youard ZA, Wenner N, Reimmann C (2011) Iron acquisition with the natural siderophore enantiomers pyochelin and enantio-pyochelin in Pseudomonas species. Biometals 24:513–522PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Alessandro Maspoli
    • 1
  • Nicolas Wenner
    • 1
  • Gaëtan L. A. Mislin
    • 2
  • Cornelia Reimmann
    • 1
  1. 1.Département de Microbiologie FondamentaleUniversité de LausanneLausanneSwitzerland
  2. 2.Transport Membranaires Bactériens, UMR 7242Université de Strasbourg-CNRSIllkirch CedexFrance

Personalised recommendations