Advertisement

BioMetals

, Volume 27, Issue 3, pp 445–458 | Cite as

Probing the cell death signaling pathway of HepG2 cell line induced by copper-1,10-phenanthroline complex

  • Jieyuan Wu
  • Wei Chen
  • Yan Yin
  • Zhongliang ZhengEmail author
  • Guolin ZouEmail author
Article

Abstract

Copper-1,10-phenanthroline (phen) complex [Cu(phen)2] has been typically known as DNA-cleaving agent. And now it becomes more important for developing multifunctional drugs with its improved cytotoxic properties. In our study, we probed the cytophysiological mechanism of Cu(phen)2. HepG2 cells were more sensitive to Cu(phen)2 with an IC50 of 4.03 μM than other three kinds of cell lines. After treated by Cu(phen)2, HepG2 cells had some typical morphological changes which happened to its nucleus. DNA ladder’s occurence and Annexin V-positive increased cells indicated that Cu(phen)2 induced HepG2 cells into apoptosis. Further studies showed that Cu(phen)2 treatment resulted in significant G2/M phase arrest and collapse of mitochondrial membrane potential. Several cell cycle-related factors were down-regulated, including Cyclin A, Cyclin B1 and Cdc2. But p21 and p53 were up-regulated. DNA damage, microtubule disorganization and mitotic arrest through spindle assembly checkpoint activation were observed in Cu(phen)2-treated cells. The activation of caspase-3, 8 & 9 were checked out. The increased-expression ratio of Bax/Bcl-2 was detected. The expression levels of Bcl-xL and Bid were found to decrease. These meant that a mitochondrial-related apoptosis pathway was activated in treated HepG2 cells. Furthermore, some ER stress-associated signaling factors were found to be up-regulated, such as Grp78, XBP-1and CHOP. Ca2+ was also found to be released from the ER lumen. Collectively, our findings demonstrate that Cu(phen)2 induces apoptosis in HepG2 cells via mitotic arrest and mitochondrial- and ER-stress-related signaling pathways.

Keywords

Cu(phen)2 Apoptosis ER stress Mitotic arrest 

Notes

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation of China (Nos. 20873092, 30800190).

Conflict of interest

The authors state no conflicts of interest.

References

  1. Agarwal ML, Agarwal A, Taylor WR, Stark GR (1995) p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci 92(18):8493PubMedCentralPubMedCrossRefGoogle Scholar
  2. Albarran G, Schuler RH (2005) Concerted effects of substituents in the reaction of ·OH radicals with aromatics: the cresols. J Phys Chem A 109(41):9363–9370PubMedCrossRefGoogle Scholar
  3. Allen JB, Zhou Z, Siede W, Friedberg EC, Elledge SJ (1994) The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Gene Dev 8(20):2401–2415PubMedCrossRefGoogle Scholar
  4. Benadiba M, dos Santos RRP, Silva DD, Colquhoun A (2010) Inhibition of C6 rat glioma proliferation by Ru2Cl(Ibp)(4) depends on changes in p21, p27, Bax/Bcl2 ratio and mitochondrial membrane potential. J Inorg Biochem 104(9):928–935. doi: 10.1016/j.jinorgbio.2010.04.011 PubMedCrossRefGoogle Scholar
  5. Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15(6):725–731PubMedCrossRefGoogle Scholar
  6. Burkitt MJ, Milne L, Nicotera P, Orrenius S (1996) 1,10-Phenanthroline stimulates internucleosomal DNA fragmentation in isolated rat-liver nuclei by promoting the redox activity of endogenous copper ions. Biochem J 313(1):163PubMedCentralPubMedGoogle Scholar
  7. Cadenas E, Davies KJA (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biol Med 29(3–4):222–230CrossRefGoogle Scholar
  8. Cai XQ, Pan N, Zou G (2007) Copper-1,10-phenanthroline-induced apoptosis in liver carcinoma Bel-7402 cells associates with copper overload, reactive oxygen species production, glutathione depletion and oxidative DNA damage. Biometals 20(1):1–11. doi: 10.1007/s10534-006-9008-0 PubMedCrossRefGoogle Scholar
  9. Chen TF, Wong YS (2009) Selenocystine induces reactive oxygen species-mediated apoptosis in human cancer cells. Biomed Pharmacother 63(2):105–113. doi: 10.1016/j.biopha.2008.03.009 PubMedCrossRefGoogle Scholar
  10. Chen CH, Chang YJ, Ku MSB, Chung KT, Yang JT (2011) Enhancement of temozolomide-induced apoptosis by valproic acid in human glioma cell lines through redox regulation. J Mol Med 89(3):303–315. doi: 10.1007/s00109-010-0707-1 PubMedCrossRefGoogle Scholar
  11. Choi EJ, Kim GH (2009) Apigenin causes G(2)/M arrest associated with the modulation of p21(Cip1) and Cdc2 and activates p53-dependent apoptosis pathway in human breast cancer SK-BR-3 cells. J Nutr Biochem 20(4):285–290. doi: 10.1016/j.jnutbio.2008.03.005 PubMedCrossRefGoogle Scholar
  12. Choi JH, Lee HW, Park HJ, Kim SH, Lee KT (2008) Kalopanaxsaponin A induces apoptosis in human leukemia U937 cells through extracellular Ca2 + influx and caspase-8 dependent pathways. Food Chem Toxicol 46(11):3486–3492. doi: 10.1016/j.fct.2008.08.026 PubMedCrossRefGoogle Scholar
  13. Cory S, Huang DCS, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22(53):8590–8607PubMedCrossRefGoogle Scholar
  14. Da Silveira VC, Luz JS, Oliveira CC, Graziani I, Ciriolo MR, Ferreira A (2008) Double-strand DNA cleavage induced by oxindole-Schiff base copper(II) complexes with potential antitumor activity. J Inorg Biochem 102(5–6):1090–1103. doi: 10.1016/j.jinorgbio.2007.12.033 PubMedCrossRefGoogle Scholar
  15. D’Andrea AD, Haseltine WA (1978) Sequence specific cleavage of DNA by the antitumor antibiotics neocarzinostatin and bleomycin. Proc Natl Acad Sci 75(8):3608–3612PubMedCentralPubMedCrossRefGoogle Scholar
  16. Deegan C, Coyle B, McCann M, Devereux M, Egan D (2006) In vitro anti-tumour effect of 1,10-phenanthroline-5,6-dione (phendione), [Cu(phendione)3](ClO4)2·4H2O and [Ag(phendione)2]ClO4 using human epithelial cell lines. Chem Biol Interact 164:115–125PubMedCrossRefGoogle Scholar
  17. Desoize B (2004) Metals and metal compounds in cancer treatment. Anticancer Res 24(3a):1529–1544Google Scholar
  18. Garibal J, Hollville E, Renouf B, Tetaud C, Wiels J (2010) Caspase-8-mediated cleavage of Bid and protein phosphatase 2A-mediated activation of Bax are necessary for Verotoxin-1-induced apoptosis in Burkitt’s lymphoma cells. Cell Signal 22(3):467–475. doi: 10.1016/j.cellsig.2009.10.018 PubMedCrossRefGoogle Scholar
  19. Ghosh S, Barve AC, Kumbhar AA, Kumbhar AS, Puranik VG, Datar PA, Sonawane UB, Joshi RR (2006) Synthesis, characterization, X-ray structure and DNA photocleavage by cis-dichloro bis(diimine) Co(III) complexes. J Inorg Biochem 100(3):331–343PubMedCrossRefGoogle Scholar
  20. Huang HL, Liu YJ, Zeng CH, Yao JH, Liang ZH, Li ZZ, Wu FH (2010) Studies of ruthenium(II) polypyridyl complexes on cytotoxicity in vitro, apoptosis, DNA-binding and antioxidant activity. J Mol Struct 966(1–3):136–143. doi: 10.1016/j.molstruc.2009.12.026 CrossRefGoogle Scholar
  21. Katsarou ME, Efthimiadou EK, Psomas G, Karaliota A, Vourloumis D (2008) Novel copper(II) complex of N-propyl-norfloxacin and 1,10-phenanthroline with enhanced antileukemic and DNA nuclease activities. J Med Chem 51(3):470–478. doi: 10.1021/jm7013259 PubMedCrossRefGoogle Scholar
  22. Le X, Liao S, Liu X, Feng X (2006) Synthesis, structure and SOD-like activity of a ternary Cu(II) complex with 1,10-phenanthroline and L-valinate. J Coord Chem 59(9):985–995CrossRefGoogle Scholar
  23. Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23(21):7448–7459PubMedCentralPubMedCrossRefGoogle Scholar
  24. Lee JW, Moon MJ, Min HY, Chung HJ, Park EJ, Park HJ, Hong JY, Kim YC, Lee SK (2005) Induction of apoptosis by a novel indirubin-5-nitro-3′-monoxime, a CDK inhibitor, in human lung cancer cells. Bioorg Med Chem Lett 15(17):3948–3952PubMedCrossRefGoogle Scholar
  25. Lee MJ, Kee KH, Suh CH, Lim SC, Oh SH (2009) Capsaicin-induced apoptosis is regulated by endoplasmic reticulum stress- and calpain-mediated mitochondrial cell death pathways. Toxicology 264(3):205–214. doi: 10.1016/j.tox.2009.08.012 PubMedCrossRefGoogle Scholar
  26. Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC, Altieri DC (1998) Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711):580–583PubMedCrossRefGoogle Scholar
  27. Liu Q, Guntuku S, Cui X-S, Matsuoka S, Cortez D, Tamai K, Luo G, Carattini-Rivera S, DeMayo F, Bradley A (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint. Gene Dev 14(12):1448–1459PubMedCentralPubMedGoogle Scholar
  28. Ma LN, Song B, Jin H, Pi J, Liu L, Jiang JH, Cai JY (2012) Cinobufacini induced MDA-MB-231 cell apoptosis-associated cell cycle arrest and cytoskeleton function. Bioorg Med Chem Lett 22(3):1459–1463. doi: 10.1016/j.bmcl.2011.11.095 PubMedCrossRefGoogle Scholar
  29. Manchado E, Guillamot M, Malumbres M (2012) Killing cells by targeting mitosis. Cell Death Differ 19:369–377PubMedCentralPubMedCrossRefGoogle Scholar
  30. Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ (2000) Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci 97(19):10389–10394PubMedCentralPubMedCrossRefGoogle Scholar
  31. Meijler MM, Zelenko O, Sigman DS (1997) Chemical mechanism of DNA scission by (1,10-Phenanthroline)copper. Carbonyl oxygen of 5-methylenefuranone is derived from water. J Am Chem Soc 119:1135–1136CrossRefGoogle Scholar
  32. Morla AO, Draetta G, Beach D, Wang J (1989) Reversible tyrosine phosphorylation of cdc2: dephosphorylation accompanies activation during entry into mitosis. Cell 58(1):193PubMedCrossRefGoogle Scholar
  33. Nemmiche S, Chabane-Sari D, Kadri M, Guiraud P (2011) Cadmium chloride-induced oxidative stress and DNA damage in the human Jurkat T cell line is not linked to intracellular trace elements depletion. Toxicol In Vitro 25(1):191–198. doi: 10.1016/j.tiv.2010.10.018 PubMedCrossRefGoogle Scholar
  34. Nilsson J (2011) Cdc20 control of cell fate during prolonged mitotic arrest. BioEssays 33:903–909PubMedCrossRefGoogle Scholar
  35. Oyadomari S, Araki E, Mori M (2002) Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 7(4):335–345PubMedCrossRefGoogle Scholar
  36. Prestayko A, d’Aoust J, Issell B, Crooke S (1979) Cisplatin (cis-diamminedichloroplatinum II). Cancer Treat Reviews 6(1):17–39CrossRefGoogle Scholar
  37. Risinger AL, Giles FJ, Mooberry SL (2009) Microtubule dynamics as a target in oncology. Cancer Treat Reviews 35(3):255CrossRefGoogle Scholar
  38. Rudner AD, Murray AW (1996) The spindle assembly checkpoint. Curr Opin Cell Biol 8(6):773–780PubMedCrossRefGoogle Scholar
  39. Simon H-U, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5(5):415–418PubMedCrossRefGoogle Scholar
  40. Theodore B, Thederahn MDK, Larsen T, Sigman D (1989) Nuclease activity of 1,10-Phenanthroline-copper: kinetic mechanism. J Am Chem Soc 111:4941–4946CrossRefGoogle Scholar
  41. Theophanides T, Anastassopoulou J (2002) Copper and carcinogenesis. Crit Rev Oncol Hemat 42(1):57–64CrossRefGoogle Scholar
  42. Tsujimoto Y (1998) Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells 3(11):697–707PubMedCrossRefGoogle Scholar
  43. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40. doi: 10.1016/j.cbi.2005.12.009 PubMedCrossRefGoogle Scholar
  44. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. doi: 10.1016/j.biocel.07.001.2006.07.001 PubMedCrossRefGoogle Scholar
  45. van Vugt MATM, Gardino AK, Linding R, Ostheimer GJ, Reinhardt HC, Ong SE, Tan CS, Miao H, Keezer SM, Li J (2010) A mitotic phosphorylation feedback network connects Cdk1, Plk1, 53BP1, and Chk2 to inactivate the G2/M DNA damage checkpoint. PLoS Biol 8(1):e1000287PubMedCentralPubMedCrossRefGoogle Scholar
  46. Wali VB, Bachawal SV, Sylvester PW (2009) Endoplasmic reticulum stress mediates gamma-tocotrienol-induced apoptosis in mammary tumor cells. Apoptosis 14(11):1366–1377. doi: 10.1007/s10495-009-0406-y PubMedCrossRefGoogle Scholar
  47. Wang HC, Yang JH, Hsieh SC, Sheen LY (2010) Allyl sulfides inhibit cell growth of skin cancer cells through induction of DNA damage mediated G(2)/M arrest and apoptosis. J Agric Food Chem 58(11):7096–7103. doi: 10.1021/jf100613x PubMedCrossRefGoogle Scholar
  48. Yang JH, Wong RNS, Yang MS (2000) Protective mechanism of metallothionein against copper-1,10-phenanthroline induced DNA cleavage. Chem Biol Interact 125(3):221–232PubMedCrossRefGoogle Scholar
  49. Zeng Y, Forbes KC, Wu Z, Moreno S, Piwnica-Worms H, Enoch T (1998) Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1. Nature 395(6701):507–510PubMedCrossRefGoogle Scholar
  50. Zhang K, Kaufman RJ (2004) Signaling the unfolded protein response from the endoplasmic reticulum. J Biol Chem 279(25):25935PubMedCrossRefGoogle Scholar
  51. Zhou H, Zheng CY, Zou GL, Tao DD, Gong JP (2002) G(1)-phase specific apoptosis in liver carcinoma cell line induced by copper-1,10-phenanthroline. Int J Biochem Cell Biol 34(6):678–684PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Virology, College of Life SciencesWuhan UniversityWuhanChina

Personalised recommendations