, Volume 26, Issue 6, pp 913–924 | Cite as

Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum

  • Christian O. DimkpaEmail author
  • Joan E. McLean
  • David W. Britt
  • Anne J. Anderson


Fungal plant pathogens such as Fusarium graminearum cause severe global economic losses in cereals crops, and current control measures are limited. This work addresses the potential for ZnO nanoparticles (NPs) and biocontrol bacteria to be used in plant fungal control strategies. Growth of F. graminearum was significantly (p = 0.05) inhibited by inclusion of the NPs in a mung bean broth agar and in sand. Suspension in mung bean broth medium modified the surface charge, dissolution, and aggregation state of the ZnO NPs, in comparison to processes occurring in water suspension. The ZnO NPs were significantly more inhibitory to fungal growth than micro-sized particles of ZnO, although both types of particles released similar levels of soluble Zn, indicating size-dependent toxicity of the particles. Zn ions produced dose-dependent inhibition, noticeable at the level of soluble Zn released from NPs after seven-day suspension in medium; inhibitory levels caused acidification of the growth medium. Transfer of fungal inoculum after exposure to the ZnO NPs to fresh medium did not indicate adaptation to the stress because growth was still inhibited by the NPs. The ZnO NPs did not prevent metabolites from a biocontrol bacterium, Pseudomonas chlororaphis O6, from inhibiting Fusarium growth: no synergism was observed in the mung bean agar. Because other studies find that soil amendment with ZnO NPs required high doses for inhibition of plant growth, the findings of pathogen growth control reported in this paper open the possibility of using ZnO NP-based formulations to complement existing strategies for improving crop health in field settings.


Biocontrol Fungi Fusarium graminearum Nanocontrol Pseudomonas chlororaphis O6 Zinc ZnO nanoparticles 



This work was supported by the United States Department of Agriculture (USDA-CSREES Grant 2011-03581), the Utah Water Research Laboratory, and the Utah Agricultural Experimental Station (Journal Paper Number 8551).


  1. Aydin SB, Hanley L (2010) Antibacterial activity of dental composites containing zinc oxide nanoparticles. J Biomed Mater Res B 94:22–31Google Scholar
  2. Calder AJ, Dimkpa CO, McLean JE, Britt DW, Johnson WP, Anderson AJ (2012) Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6. Sci Total Environ 429:215–222PubMedCrossRefGoogle Scholar
  3. Cook RJ, Veseth RJ (1991) Wheat health management. Plant Heath Management Series. American Phytopathology Society Press, St. PaulGoogle Scholar
  4. Dhas SP, Shiny PJ, Khan SS, Mukherjee A, Chandrasekaran N (2013) Toxic behavior of silver and zinc oxide nanoparticles on environmental microorganisms. J Basic Microbiol. doi: 10.1002/jobm.201200316 PubMedGoogle Scholar
  5. Dimkpa CO, Calder A, McLean JE, Britt DW, Anderson AJ (2011a) Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Environ Pollut 159:1749–1756PubMedCrossRefGoogle Scholar
  6. Dimkpa CO, Calder C, Gajjar P, Merugu S, Huang W, Britt DW, McLean JE, Johnson WP, Anderson AJ (2011b) Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis. J Hazard Mater 188:428–435PubMedCrossRefGoogle Scholar
  7. Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2012a) CuO and ZnO nanoparticles differently affect the secretion of fluorescent siderophores in the beneficial root colonizer, Pseudomonas chlororaphis O6. Nanotoxicology 6:635–642PubMedCrossRefGoogle Scholar
  8. Dimkpa CO, Zeng J, McLean JE, Britt DW, Zhan J, Anderson AJ (2012b) Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl Environ Microbiol 78:1404–1410PubMedCrossRefGoogle Scholar
  9. Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2012c) Bioactivity and biomodification of Ag, ZnO and CuO nanoparticles with relevance to plant performance in agriculture. Ind Biotechnol 8:344–357CrossRefGoogle Scholar
  10. Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012d) CuO and ZnO nanoparticles: phytotoxicity, metal speciation and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1125. doi: 10.1007/s11051-012-1125-9 CrossRefGoogle Scholar
  11. Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013a) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090PubMedCrossRefGoogle Scholar
  12. Dimkpa CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ (2013b) Fate of CuO and ZnO nano and micro particles in the plant environment. Environ Sci Technol 47:4734–4742PubMedCrossRefGoogle Scholar
  13. Dinesh R, Anandaraj M, Srinivasan V, Hamza S (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173:19–27CrossRefGoogle Scholar
  14. Doiron K, Pelletier E, Lemarchand K (2012) Impact of polymer-coated silver nanoparticles on marine microbial communities: a microcosm study. Aquat Toxicol 124:22–27PubMedCrossRefGoogle Scholar
  15. Emami-Karvani Z, Chehrazi P (2011) Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria. Afr J Microbiol Res 5:1368–1373Google Scholar
  16. Fang T, Watson J-L, Goodman J, Dimkpa CO, Martineau N, Das S, McLean JE, Britt DW, Anderson AJ (2013) Does doping with aluminum alter the effects of ZnO nanoparticles on the metabolism of soil pseudomonads? Microbiol Res 168:91–98PubMedCrossRefGoogle Scholar
  17. Gajjar P, Pettee B, Britt DW, Huang W, Johnson WP, Anderson AJ (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 3:9PubMedCrossRefGoogle Scholar
  18. Gilchrist L, Dubin HJ (2002) Fusarium head blight. In: Curtis BC, Rajaram S, Gómez Macpherson H (eds) Bread wheat improvement and production. FAO Plant Production and Protection Series No. 30. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  19. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792PubMedCrossRefGoogle Scholar
  20. Gondal MA, Alzahrani AJ, Randhawa MA, Siddiqui MN (2012) Morphology and antifungal effect of nano-ZnO and nano-Pd-doped nano-ZnO against Aspergillus and Candida. J Environ Sci Health A Tox Hazard Subst Environ Eng 47:1413–1418PubMedCrossRefGoogle Scholar
  21. Grewal HS, Graham RD, Rengel Z (1996) Genotypic variation in zinc efficiency and resistance to crown rot disease (Fusarium graminearum Schw. Group 1) in wheat. Plant Soil 186:219–226CrossRefGoogle Scholar
  22. He L, Liu Y, Mustapha Z, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215PubMedCrossRefGoogle Scholar
  23. Heinlaan M, Ivask A, Blinova I, Dubourguier H-C, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316PubMedCrossRefGoogle Scholar
  24. Jain N, Bhargava A, Tarafdar JC, Singh SK, Panwar J (2013) A biomimetic approach towards synthesis of zinc oxide nanoparticles. Appl Microbiol Biotechnol 97:859–869PubMedCrossRefGoogle Scholar
  25. Jayaseelan C, Abdul Rahuman A, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Bhaskara-Rao KV (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 90:78–84PubMedCrossRefGoogle Scholar
  26. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043CrossRefGoogle Scholar
  27. Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76PubMedCrossRefGoogle Scholar
  28. Kanda N, Ishizaki N, Inoue N, Oshima M, Handa A, Kitahara T (1975) DB-2073, A new alkylresorcinol antibiotic I. Taxonomy, isolation and characterization. J Antibiot 28:935–942PubMedCrossRefGoogle Scholar
  29. Kang BR, Cho BH, Anderson AJ, Kim YC (2004) The global regulator GacS of a biocontrol bacterium Pseudomonas chlororaphis O6 regulates transcription from the rpoS gene encoding a stationary-phase sigma factor and affects survival in oxidative stress. Gene 325:137–143PubMedCrossRefGoogle Scholar
  30. Kang BR, Han SH, Zdor RE, Anderson AJ, Spencer M, Yang KY, Kim YH, Lee MC, Cho BH, Kim YC (2007) Inhibition of seed germination and induction of systemic disease resistance by Pseudomonas chlororaphis O6 requires phenazine production regulated by the global regulator, gacS. J Microbiol Biotechnol 17:586–593PubMedGoogle Scholar
  31. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70CrossRefGoogle Scholar
  32. Kim JE, Han KH, Jin J, Kim H, Kim JC, Yun SH, Lee YW (2005) Putative polyketide synthase and laccase genes for biosynthesis of aurofusarin in Gibberella zeae. Appl Environ Microbiol 71:1701–1708PubMedCrossRefGoogle Scholar
  33. Kim KJ, Sung WS, Suh BK, Moon S-K, Choi J-S, Kim JG, Lee DG (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22:235–242PubMedCrossRefGoogle Scholar
  34. Kim S, Lee S, Lee I (2012) Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut 223:2799–2806CrossRefGoogle Scholar
  35. Lamsal K, Kim S-W, Jung JH, Kim YS, Kim KS, Lee YS (2011) Effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39:26–32PubMedCrossRefGoogle Scholar
  36. Lin D-H, Xing BS (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585PubMedCrossRefGoogle Scholar
  37. Liu W-S, Peng Y-H, Shiung CE, Shih Y-H (2012) The effect of cations on the aggregation of commercial ZnO nanoparticle suspension. J Nanopart Res 14:1259CrossRefGoogle Scholar
  38. Loper JE, Hassan KA, Mavrodi DV, Davis EW, Lim CK et al (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8(7):e1002784. doi: 10.1371/journal.pgen.1002784 PubMedCrossRefGoogle Scholar
  39. López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320PubMedCrossRefGoogle Scholar
  40. Malz S, Grell MN, Thrane C, Maier FJ, Rosager P, Felk A, Albertsen KS, Salomon S, Bohn L, Schäfer W, Giese H (2005) Identification of a gene cluster responsible for the biosynthesis of aurofusarin in the Fusarium graminearum species complex. Fungal Genet Biol 42:420–433PubMedCrossRefGoogle Scholar
  41. Marín S, Sanchis V, Magan N (1995) Water activity, temperature, and pH effects on growth of Fusarium moniliforme and Fusarium proliferatum isolates from maize. Can J Microbiol 41:1063–1070PubMedCrossRefGoogle Scholar
  42. Martínez-Abad A, Sanchez G, Lagaron JM, Ocio MJ (2012) On the different growth conditions affecting silver antimicrobial efficacy on Listeria monocytogenes and Salmonella enterica. Int J Food Microbiol 158:147–154PubMedCrossRefGoogle Scholar
  43. McQuillan JS, Infante GH, Stokes E, Shaw AM (2012) Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12. Nanotoxicology 6:857–866PubMedCrossRefGoogle Scholar
  44. Nohynek GJ, Lademann J, Ribaud C, Roberts MS (2007) Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37:251–277PubMedCrossRefGoogle Scholar
  45. Nowak-Thompson B, Hammer PE, Hill DS, Stafford J, Torkewitz N, Gaffney TD, Lam ST, Molnár I, Ligon JM (2003) 2,5-Dialkylresorcinol biosynthesis in Pseudomonas aurantiaca: novel head-to-head condensation of two fatty acid-derived precursors. J Bacteriol 185:860–869PubMedCrossRefGoogle Scholar
  46. Oh SA, Kim SO, Park JY, Han SH, Dimkpa C, Anderson AJ, Kim YC (2013) The RpoS sigma factor negatively regulates production of IAA and siderophore in a biocontrol rhizobacterium, Pseudomonas chlororaphis O6. Plant Pathol J 29:1–7CrossRefGoogle Scholar
  47. Pan B, Xing B (2012) Applications and implications of manufactured nanoparticles in soils: a review. Eur J Soil Sci 63:437–456CrossRefGoogle Scholar
  48. Pandey AC, Sanjay SS, Yadav RS (2010) Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. J Exp Nanosci 5:488–497CrossRefGoogle Scholar
  49. Park JY, Oh SA, Anderson AJ, Neiswender J, Kim JC, Kim YC (2011) Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Lett Appl Microbiol 52:532–537PubMedCrossRefGoogle Scholar
  50. Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Gelb J, Walker SL, Nisbet RM, An Y-J, Schimel JP, Palmer RG, Hernandez-Viezcas JA, Zhao L, Gardea-Torresdey JL, Holden PA (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci USA 109:2451–2456CrossRefGoogle Scholar
  51. Rousk J, Ackermann K, Curling SF, Jones DL (2012) Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities. PLoS One 7(3):e34197. doi: 10.1371/journal.pone.0034197 PubMedCrossRefGoogle Scholar
  52. Sparrow DH, Graham RD (1988) Susceptibility of zinc-deficient wheat plants to colonization by Fusarium graminearum Schw. Group 1. Plant Soil 112:261–266CrossRefGoogle Scholar
  53. Spencer M, Ryu CM, Yang KY, Kim YC, Kloepper J, Anderson AJ (2003) Induced defence in tobacco by Pseudomonas chlororaphis strain O6 involves at least the ethylene pathway. Physiol Mol Plant Pathol 63:27–34CrossRefGoogle Scholar
  54. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479Google Scholar
  55. Vandebriel RJ, De-Jong WH (2012) A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol Sci Appl 5:61–71PubMedCrossRefGoogle Scholar
  56. Wang YC, Leu IC, Hon MH (2002) Effect of colloid characteristics on the fabrication of ZnO nanowire arrays by electrophoretic deposition. J Mater Chem 12:2439–2444CrossRefGoogle Scholar
  57. Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157:1171–1177PubMedCrossRefGoogle Scholar
  58. Wheeler KA, Hurdman BF, Pitt JI (1991) Influence of pH on the growth of some toxigenic species of Aspergillus, Penicillium and Fusarium. Int J Food Microbiol 12:141–149PubMedCrossRefGoogle Scholar
  59. Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77:325–2331Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Christian O. Dimkpa
    • 1
    Email author
  • Joan E. McLean
    • 2
  • David W. Britt
    • 3
  • Anne J. Anderson
    • 1
  1. 1.Department of BiologyUtah State UniversityLoganUSA
  2. 2.Utah Water Research LaboratoryUtah State UniversityLoganUSA
  3. 3.Biological EngineeringUtah State UniversityLoganUSA

Personalised recommendations