BioMetals

, Volume 26, Issue 4, pp 561–575

A combinatorial approach to the structure elucidation of a pyoverdine siderophore produced by a Pseudomonas putida isolate and the use of pyoverdine as a taxonomic marker for typing P. putida subspecies

  • Lumeng Ye
  • Steven Ballet
  • Falk Hildebrand
  • Georges Laus
  • Karel Guillemyn
  • Jeroen Raes
  • Sandra Matthijs
  • José Martins
  • Pierre Cornelis
Article

Abstract

The structure of a pyoverdine produced by Pseudomonas putida, W15Oct28, was elucidated by combining mass spectrometric methods and bioinformatics by the analysis of non-ribosomal peptide synthetase genes present in the newly sequenced genome. The only form of pyoverdine produced by P. putida W15Oct28 is characterized to contain α-ketoglutaric acid as acyl side chain, a dihydropyoverdine chromophore, and a 12 amino acid peptide chain. The peptide chain is unique among all pyoverdines produced by Pseudomonas subspecies strains. It was characterized as –l-Asp-l-Ala-d-AOHOrn-l-Thr-Gly-c[l-Thr(O-)-l-Hse-d-Hya-l-Ser-l-Orn-l-Hse-l-Ser-O-]. The chemical formula and the detected and calculated molecular weight of this pyoverdine are: C65H93N17O32, detected mass 1624.6404 Da, calculated mass 1624.6245. Additionally, pyoverdine structures from both literature reports and bioinformatics prediction of the genome sequenced P. putida strains are summarized allowing us to propose a scheme based on pyoverdines structures as tool for the phylogeny of P. putida. This study shows the strength of the combination of in silico analysis together with analytical data and literature mining in determining the structure of secondary metabolites such as peptidic siderophores.

Keywords

Pseudomonas putida Pyoverdine Structure elucidation Bioinformatic prediction Phylogenetic marker 

Supplementary material

10534_2013_9653_MOESM1_ESM.ppt (1.2 mb)
Supplementary Figure 1IEF gel image of pyoverdines produced by P. putida W15Oct28 and P. putida L1. Pyoverdine of P. putida W15Oct28 (left lane) shows white fluorescence under UV light due to the un-matured dihydropyoverdine chromophore, while the pyoverdine L1 shows blue fluorescence and two isoforms. (PPT 1276 kb)
10534_2013_9653_MOESM2_ESM.doc (1.1 mb)
Supplementary Figure 2Amino acid analysis of fully hydrolyzed N-TFA-n-butylester derivates by GC/MS. (DOC 1155 kb)
10534_2013_9653_MOESM3_ESM.ppt (300 kb)
Supplementary Fig. 3Three dimensional structure model of P. putida W15Oct28 pyoverdine–Fe3+ complex based on the hexadentate character. Green: carbons, Red: oxygens, Blue: nitrogen, Brown: Iron ion, non-polar hydrogens not shown. (PPT 302 kb)

References

  1. Anand S et al (2010) SBSPKS: structure based sequence analysis of polyketide synthases. Nucleic Acids Res 38:W487–W496PubMedCrossRefGoogle Scholar
  2. Aziz RK et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75PubMedCrossRefGoogle Scholar
  3. Bachmann BO, Ravel J (2009) Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods Enzymol 458:181–217PubMedCrossRefGoogle Scholar
  4. Bodilis J et al (2009) Distribution and evolution of ferripyoverdine receptors in Pseudomonas aeruginosa. Environ Microbiol 11:2123–2135PubMedCrossRefGoogle Scholar
  5. Budzikiewicz H (2004) Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-fluorescent Pseudomonas spp.). Fortschr Chem Org Naturst 87:81–237PubMedGoogle Scholar
  6. Budzikiewicz H, Kilz S, Taraz K, Meyer JM (1997) Identical pyoverdines from Pseudomonas fluorescens 9AW and from Pseudomonas putida 9BW. Z Naturforsch 52c:721–728Google Scholar
  7. Budzikiewicz H, Schafer M, Fernandez DU, Matthijs S, Cornelis P (2007) Characterization of the chromophores of pyoverdins and related siderophores by electrospray tandem mass spectrometry. Biometals 20:135–144PubMedCrossRefGoogle Scholar
  8. Bultreys A, Gheysen I, Maraite H, de Hoffmann E (2001) Characterization of fluorescent and nonfluorescent peptide siderophores produced by Pseudomonas syringae strains and their potential use in strain identification. Appl Environ Microbiol 67:1718–1727PubMedCrossRefGoogle Scholar
  9. Caboche S, Pupin M, Leclere V, Fontaine A, Jacques P, Kucherov G (2008) NORINE: a database of nonribosomal peptides. Nucleic Acids Res 36:D326–D331PubMedCrossRefGoogle Scholar
  10. Caboche S, Leclere V, Pupin M, Kucherov G, Jacques P (2010) Diversity of monomers in nonribosomal peptides: towards the prediction of origin and biological activity. J Bacteriol 192:5143–5150PubMedCrossRefGoogle Scholar
  11. Challis GL, Ravel J, Townsend CA (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7:211–224PubMedCrossRefGoogle Scholar
  12. Cornelis P (2010) Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86:1637–1645PubMedCrossRefGoogle Scholar
  13. Cornelis P, Hohnadel D, Meyer JM (1989) Evidence for different pyoverdine-mediated iron uptake systems among Pseudomonas aeruginosa strains. Infect Immun 57:3491–3497PubMedGoogle Scholar
  14. Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249PubMedCrossRefGoogle Scholar
  15. de Chial M et al (2003) Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa. Microbiology 149:821–831PubMedCrossRefGoogle Scholar
  16. Demange P, Bateman A, Dell A, Abdallah MA (1988) Structure of azotobactin D, a siderophore of Azotobacter vinelandii strain-D (Ccm-289). Biochemistry 27:2745–2752CrossRefGoogle Scholar
  17. Demange P, Bateman A, Mertz C, Dell A, Piémont Y, Abdullah M (1990) Structures of pyoverdins Pt, sidero-phores of Pseudomonas tolaasii NCPPB 2192, and pyoverdins Pf, siderophores of Pseudomonas fluorescens CCM 2798. Identification of an unusual natural amino acid. Biochemistry 29:11041–11105PubMedCrossRefGoogle Scholar
  18. Djavaheri M, Mercado-Blanco J, Versluis C, Meyer JM, Van Loon LC, Bakker PAHM (2012) Iron-regulatedmetabolites produced by Pseudomonas fluorescens WCS374r are not required for eliciting induced systemic resistance against Pseudomonas syringae pv. tomato in Arabidopsis. MicrobiologyOpen 1:311–325PubMedCrossRefGoogle Scholar
  19. Duan J, Jiang W, Cheng Z, Heikkila JJ, Glick BR (2013) The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4. PLoS ONE 8:e58640PubMedCrossRefGoogle Scholar
  20. Fuchs R, Schafer M, Geoffroy V, Meyer JM (2001) Siderotyping—a powerful tool for the characterization of pyoverdines. Curr Top Med Chem 1:31–57PubMedCrossRefGoogle Scholar
  21. Georgias H, Taraz K, Budzikiewicz H, Geoffroy V, Meyer JM (1999) The structure of the pyoverdin from Pseudomonas fluorescens 1.3. Structural and biological relationships of pyoverdins from different strains. Z Naturforsch 54c:301–308Google Scholar
  22. Gipp S, Hahn J, Taraz K, Budzikiewicz H (1991) Zwei Pyoverdine aus Pseudomonas aeruginosa R. Z Naturforsch 46c:534–541Google Scholar
  23. Goldberg JB (2000) Pseudomonas: global bacteria. Trends Microbiol 8:55–57PubMedCrossRefGoogle Scholar
  24. Gross H, Stockwell VO, Henkels MD, Nowak-Thompson B, Loper JE, Gerwick WH (2007) The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem Biol 14:53–63PubMedCrossRefGoogle Scholar
  25. Hannauer M, Braud A, Hoegy F, Ronot P, Boos A, Schalk IJ (2012) The PvdRT-OpmQ efflux pump controls the metal selectivity of the iron uptake pathway mediated by the siderophore pyoverdine in Pseudomonas aeruginosa. Environ Microbiol 14:1696–1708PubMedCrossRefGoogle Scholar
  26. Hartney SL et al (2013) Ferric-pyoverdine recognition by Fpv outer membrane proteins of Pseudomonas protegens Pf-5. J Bacteriol 195:765–776PubMedCrossRefGoogle Scholar
  27. Jacques P et al (1995) Structure and characterization of isopyoverdin from Pseudomonas putida BTP1 and its relation to the biogenetic pathway leading to pyoverdins. Z Naturforsch C 50:622–629PubMedGoogle Scholar
  28. Jimenez PN et al (2010) Role of PvdQ in Pseudomonas aeruginosa virulence under iron-limiting conditions. Microbiology 156:49–59CrossRefGoogle Scholar
  29. Koedam N, Wittouck E, Gaballa A, Gillis A, Hofte M, Cornelis P (1994) Detection and differentiation of microbial siderophores by isoelectric focusing and chrome azurol S overlay. Biometals 7:287–291PubMedCrossRefGoogle Scholar
  30. Konz D, Marahiel MA (1999) How do peptide synthetases generate structural diversity? Chem Biol 6:R39–R48PubMedCrossRefGoogle Scholar
  31. Lamont IL, Martin LW, Sims T, Scott A, Wallace M (2006) Characterization of a gene encoding an acetylase required for pyoverdine synthesis in Pseudomonas aeruginosa. J Bacteriol 188:3149–3152PubMedCrossRefGoogle Scholar
  32. Larkin MA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  33. Leimer KR, Rice RH, Gehrke CW (1977) Complete mass spectra of N-trifluoroacetyl-n-butyl esters of amino acids. J Chromatogr 141:121–144PubMedCrossRefGoogle Scholar
  34. Matthijs S et al (2009) Siderophore-mediated iron acquisition in the entomopathogenic bacterium Pseudomonas entomophila L48 and its close relative Pseudomonas putida KT2440. Biometals 22:951–964PubMedCrossRefGoogle Scholar
  35. Meyer JM (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174:135–142PubMedCrossRefGoogle Scholar
  36. Meyer JM et al (1997) Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. Microbiology 143:35–43PubMedCrossRefGoogle Scholar
  37. Meyer JM, Gruffaz C, Tulkki T, Izard D (2007) Taxonomic heterogeneity, as shown by siderotyping, of strains primarily identified as Pseudomonas putida. Int J Syst Evol Microbiol 57:2543–2556PubMedCrossRefGoogle Scholar
  38. Meyer JM, Gruffaz C, Raharinosy V, Bezverbnaya I, Schafer M, Budzikiewicz H (2008) Siderotyping of fluorescent Pseudomonas: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals 21:259–271PubMedCrossRefGoogle Scholar
  39. Molecular Operating Environment (MOE) (2012) 2012.10 Chemical Computing Group Inc., Montreal, H3A 2R7Google Scholar
  40. Moon CD, Zhang XX, Matthijs S, Schafer M, Budzikiewicz H, Rainey PB (2008) Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25. BMC Microbiol 8:7PubMedCrossRefGoogle Scholar
  41. Mossialos D et al (2002) Identification of new, conserved, non-ribosomal peptide synthetases from fluorescent pseudomonads involved in the biosynthesis of the siderophore pyoverdine. Mol Microbiol 45:1673–1685PubMedCrossRefGoogle Scholar
  42. Ozen AI, Ussery DW (2012) Defining the Pseudomonas genus: where do we draw the line with Azotobacter? Microb Ecol 63:239–248PubMedCrossRefGoogle Scholar
  43. Persmark M, Frejd T, Mattiasson B (1990) Purification, characterization, and structure of pseudobactin 589A, a siderophore from a plant growth promoting Pseudomonas. Biochemistry 29:7348–7356PubMedCrossRefGoogle Scholar
  44. Pirnay JP et al (2005) Global Pseudomonas aeruginosa biodiversity as reflected in a Belgian river. Environ Microbiol 7:969–980PubMedCrossRefGoogle Scholar
  45. Ramette A et al (2011) Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Syst Appl Microbiol 34:180–188PubMedCrossRefGoogle Scholar
  46. Ravel J, Cornelis P (2003) Genomics of pyoverdine-mediated iron uptake in Pseudomonads. Trends Microbiol 11:195–200PubMedCrossRefGoogle Scholar
  47. Rediers H, Vanderleyden J, De Mot R (2004) Azotobacter vinelandii: a Pseudomonas in disguise? Microbiology 150:1117–1119PubMedCrossRefGoogle Scholar
  48. Rosconi F et al (2013) Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte Herbaspirillum seropedicae. Environ Microbiol 15:916–927PubMedCrossRefGoogle Scholar
  49. Rottig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O (2011) NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res 39:W362–W367PubMedCrossRefGoogle Scholar
  50. Ruangviriyachai C, Fernandez DU, Schäfer M, Budzikiewicz H (2004) Structure proposal for a new pyoverdin from a Thai Pseudomonas putida strain. Spectroscopy 18:453–458CrossRefGoogle Scholar
  51. Salah-el-Din ALM, Kyslic P, Stephan D, Abdallah MA (1997) Bacterial iron transport: structure elucidation by FAB-MS and by 2 D NMR (1H, 13C, 15N) of pyoverdin G4R, a peptidic siderophore produced by a nitrogen-fixing strain of Pseudomonas putida. Tetrahedron 53:12539–12552CrossRefGoogle Scholar
  52. Schalk IJ, Guillon L (2012) Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: implications for metal homeostasis. Environ Microbiol 15:1661–1673PubMedCrossRefGoogle Scholar
  53. Schalk IJ, Guillon L (2013a) Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways. Amino Acids 44:1267–1277PubMedCrossRefGoogle Scholar
  54. Schalk IJ, Guillon L (2013b) Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: implications for metal homeostasis. Environ Microbiol 15:1661–1673PubMedCrossRefGoogle Scholar
  55. Seinsche D, Taraz K, Budzikiewicz H, Gondol D (1993) Neue pyoverdin-siderophore aus Pseudomonas putida C. J Prakt Chem 335:157–168CrossRefGoogle Scholar
  56. Setubal JC et al (2009) Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol 191:4534–4545PubMedCrossRefGoogle Scholar
  57. Siezen RJ, Mague TH (1977) Gas-liquid chromatography of the N-heptafluorobutyryl isobutyl esters of fifty biologically interesting amino acids. J Chromatogr 130:151–160PubMedCrossRefGoogle Scholar
  58. Smith EE, Sims EH, Spencer DH, Kaul R, Olson MV (2005) Evidence for diversifying selection at the pyoverdine locus of Pseudomonas aeruginosa. J Bacteriol 187:2138–2147PubMedCrossRefGoogle Scholar
  59. Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505PubMedCrossRefGoogle Scholar
  60. Sultana R, Siddiqui BS, Taraz K, Budzikiewicz H, Meyer JM (2000) A pyoverdine from Pseudomonas putida CFML 90-51 with a Lys epsilon-amino link in the peptide chain. Biometals 13:147–152PubMedCrossRefGoogle Scholar
  61. Sultana R, Siddiqui BS, Taraz K, Budzikiewicz H, Meyer JM (2001a) An isopyoverdin from Pseudomonas putida CFML 90-33. Tetrahedron 57:1019–1023CrossRefGoogle Scholar
  62. Sultana R, Siddiqui BS, Taraz K, Budzikiewicz H, Meyer JM (2001b) An isopyoverdin from Pseudomonas putida CFML 90-44. Z Naturforsch C 56(3–4):303–307PubMedGoogle Scholar
  63. Tappe R, Taraz K, Budzikiewicz H, Meyer JM, Lefèvre JF (1993) Structure elucidation of a pyoverdin produced by Pseudomonas aeruginosa ATCC 27853. J Prakt Chem 335:83–87CrossRefGoogle Scholar
  64. The PyMOL Molecular Graphics System (2013) Version 1.5.0.3. Schrödinger, LLC, New YorkGoogle Scholar
  65. Uría-Fernández D, Geoffroy V, Schäfer M, Meyer JM, Budzikiewicz H (2003) Structure revision of pyoverdines produced by plant-growth promoting and plant-deleterious Pseudomonas species. Monatsh Chem 134:1421–1431CrossRefGoogle Scholar
  66. Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15:22–30PubMedCrossRefGoogle Scholar
  67. Wong-Lun-Sang S, Bernardini JJ, Hennard C, Kyslík P, Dell A, Abdallah MA (1996) Bacterial siderophores: structure elucidation, 2D 1H and 13C NMR assignments of pyoverdins produced by Pseudomonas fluorescens CHAO. Pergamon 37:3329–3332Google Scholar
  68. Yeterian E, Martin LW, Guillon L, Journet L, Lamont IL, Schalk IJ (2010) Synthesis of the siderophore pyoverdine in Pseudomonas aeruginosa involves a periplasmic maturation. Amino Acids 38:1447–1459PubMedCrossRefGoogle Scholar
  69. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Lumeng Ye
    • 1
  • Steven Ballet
    • 2
  • Falk Hildebrand
    • 1
  • Georges Laus
    • 2
  • Karel Guillemyn
    • 2
  • Jeroen Raes
    • 1
  • Sandra Matthijs
    • 3
  • José Martins
    • 4
  • Pierre Cornelis
    • 1
  1. 1.Research Group Microbiology, Department of Bioengineering Sciences, VIB Department of Structural BiologyVrije Universiteit BrusselBrusselsBelgium
  2. 2.Research Group of Organic Chemistry, Department of ChemistryVrije Universiteit BrusselBrusselsBelgium
  3. 3.Institut de Recherches Microbiologiques—WiameBrusselsBelgium
  4. 4.NMR and Structure Analysis Unit, Department of Organic ChemistryUniversiteit GentGhentBelgium

Personalised recommendations