BioMetals

, Volume 26, Issue 5, pp 693–703 | Cite as

Cobalt binding in the photosynthetic bacterium R. sphaeroides by X-ray absorption spectroscopy

  • Benny D. Belviso
  • Francesca Italiano
  • Rocco Caliandro
  • Benedetta Carrozzini
  • Alessandra Costanza
  • Massimo Trotta
Article

Abstract

Cobalt is an important oligoelement required for bacteria; if present in high concentration, exhibits toxic effects that, depending on the microorganism under investigation, may even result in growth inhibition. The photosynthetic bacterium Rhodobacter (R.) sphaeroides tolerates high cobalt concentration and bioaccumulates Co2+ ion, mostly on the cellular surface. Very little is known on the chemical fate of the bioaccumulated cobalt, thus an X-ray absorption spectroscopy investigation was conducted on R. sphaeroides cells to gain structural insights into the Co2+ binding to cellular components. X-ray absorption near-edge spectroscopy and extended X-ray absorption fine structure measurements were performed on R. sphaeroides samples containing whole cells and cell-free fractions obtained from cultures exposed to 5 mM Co2+. An octahedral coordination geometry was found for the cobalt ion, with six oxygen-ligand atoms in the first shell. In the soluble portion of the cell, cobalt was found bound to carboxylate groups, while a mixed pattern containing equivalent amount of two sulfur and two carbon atoms was found in the cell envelope fraction, suggesting the presence of carboxylate and sulfonate metal-binding functional groups, the latter arising from sulfolipids of the cell envelope.

Keywords

Cobalt coordination Membrane Sulfolipids Rhodobacter sphaeroides EXAFS 

Notes

Acknowledgments

Ralph Steininger and Joerg Goettlicher at SUL-X beamline at ANKA are greatly acknowledged (Project ENV-219). Support for this work was obtained by the Italian Ministry of Research Education and Education (PRIN 2009) and by COST Action CM0902 Molecular machinery for ion translocation across the membrane.

References

  1. Albering H, van Leusen S, Moonen E, Hoogewerff J, Kleinjans J (1999) Human health risk assessment: a case study involving heavy metal soil contamination after the flooding of the river Meuse during the winter of 1993–1994. Environ Health Perspect 107(1):37–43PubMedCrossRefGoogle Scholar
  2. Barceloux DG (1999) Cobalt. J Toxicol Clin Toxicol 37(2):201–206PubMedCrossRefGoogle Scholar
  3. Barton MR, Zhang Y, Atwood JD (2002) Mono-sulfonated derivatives of triphenylphosphine, [NH4]TPPMS and M(TPPMS)2 (TPPMS = P(Ph)2(m-C6H4SO3 ); M = Mn2+, Fe2+, Co2+ and Ni2+). Crystal structure determinations for [NH4]TPPMS*½ H2O, [Fe(H2O)5(TPPMS)TPPMS], [Co(H2O)5TPPMS]TPPMS and [Ni(H2O)6](TPPMS)4*H2O. J Coord Chem 55(8):969–983CrossRefGoogle Scholar
  4. Bebien M, Chauvin JP, Adriano JM, Grosse S, Vermeglio A (2001) Effect of selenite on growth and protein synthesis in the phototrophic bacterium Rhodobacter sphaeroides. Appl Environ Microbiol 67(10):4440–4447PubMedCrossRefGoogle Scholar
  5. Benning C, Beatty JT, Prince RC, Somerville CR (1993) The sulfolipid sulfoquinovosyldiacylglycerol is not required for photosynthetic electron transport in Rhodobacter sphaeroides but enhances growth under phosphate limitation. Proc Natl Acad Sci USA 90(4):1561–1565PubMedCrossRefGoogle Scholar
  6. Boyanov MI, Kelly SD, Kemner KM, Bunker BA, Fein JB, Fowle DA (2003) Adsorption of cadmium to Bacillus subtilis bacterial cell walls: a pH-dependent X-ray absorption fine structure spectroscopy study. Geochimica et Cosmochimica Acta 67(18):3299–3311. doi:http://dx.doi.org/10.1016/S0016-7037(02)01343-1 Google Scholar
  7. Brink C, Hodgkin DC, Lindsey J, Pickworth J, Robertson JH, White JG (1954) Structure of vitamin B12: X-ray crystallographic evidence on the structure of vitamin B12. Nature 174(4443):1169–1171PubMedCrossRefGoogle Scholar
  8. Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45(3):198–207PubMedCrossRefGoogle Scholar
  9. Buccolieri A, Italiano F, Dell’Atti A, Buccolieri G, Giotta L, Agostiano A, Milano F, Trotta M (2006) Testing the photosynthetic bacterium Rhodobacter sphaeroides as heavy metal removal tool. Ann Chim 96(3–4):195–203PubMedCrossRefGoogle Scholar
  10. Coucouvanis D, Reynolds RA, Dunham WR (1995) Synthesis and characterization of a new class of asymmetric aqua-acetate bridged dimers. Solid state molecular structures of the [M2(.mu.-H2O)(.mu.-OAc)2(OAc)3(Py)2]-anions (M = Mn(II), Fe(II), Co(II)). A structural model for the Fe2 site in methane monooxygenase. J Am Chem Soc 117(28):7570–7571. doi:10.1021/ja00133a041 CrossRefGoogle Scholar
  11. D’Amici GM, Rinalducci S, Murgiano L, Italiano F, Zolla L (2010) Oligomeric characterization of the photosynthetic apparatus of Rhodobacter sphaeroides R26.1 by nondenaturing electrophoresis methods. J Proteome Res 9(1):192–203PubMedCrossRefGoogle Scholar
  12. Drews G, Golcki JR (1995) Structure, molecular organization and biosynthesis of membranes of purple bacteria. In: Blankenship RE, Madiga MT, Bauer CE (eds) Anoxygenic photosyntetic bacteria. Advances in photosynthesis, vol 2. Kluwer, Dordrecht, pp 231–257CrossRefGoogle Scholar
  13. Fang J, Barcelona MJ, Semrau JD (2000) Characterization of methanotrophic bacteria on the basis of intact phospholipid profiles. FEMS Microbiol Lett 189(1):67–72PubMedCrossRefGoogle Scholar
  14. Forstner U, Wittmann GTW (1983) Metal pollution in the aquatic environment. Springer, BerlinGoogle Scholar
  15. Frenkel AI, Korshin GV (1999) A study of non-uniformity of metal binding sites in humic substances by X-ray absorption spectroscopy. Royal Society of Chemistry, CambridgeGoogle Scholar
  16. Gault N, Sandre C, Poncy JL, Moulin C, Lefaix JL, Bresson C (2010) Cobalt toxicity: chemical and radiological combined effects on HaCaT keratinocyte cell line. Toxicol In Vitro 24(1):92–98. doi:10.1016/j.tiv.2009.08.027 PubMedCrossRefGoogle Scholar
  17. Ghabbour EA, Scheinost AC, Davies G (2007) XAFS studies of cobalt(II) binding by solid peat and soil-derived humic acids and plant-derived humic acid-like substances. Chemosphere 67(2):285–291. doi:http://dx.doi.org/10.1016/j.chemosphere.2006.09.094
  18. Giotta L, Agostiano A, Italiano F, Milano F, Trotta M (2006) Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides. Chemosphere 62(9):1490–1499PubMedCrossRefGoogle Scholar
  19. Giotta L, Italiano F, Pisani F, Ceci LLR, De Leo F (2007) Cobalt effect on the bacteriochlorophyll biosynthesis pathway and magnesium metabolism in Rhodobacter sphaeroides strain R26.1. Photosynth Res 91(2–3):302–303Google Scholar
  20. Giotta L, Italiano F, Buccolieri A, Agostiano A, Milano F, Trotta M (2008) Magnesium chemical rescue to cobalt-poisoned cells from Rhodobacter sphaeroides. In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Photosynthesis. Energy from the sun: 14th international congress on photosynthesis, vol 1. Springer, Dordrecht, pp 1455–1458CrossRefGoogle Scholar
  21. Giotta L, Mastrogiacomo D, Italiano F, Milano F, Agostiano A, Nagy K, Valli L, Trotta M (2011) Reversible binding of metal ions onto bacterial layers revealed by protonation-induced ATR–FTIR difference spectroscopy. Langmuir 27(7):3762–3773. doi:10.1021/la104868m PubMedCrossRefGoogle Scholar
  22. Guengerich FP (2012) Thematic Minireview series: metals in biology 2012. J Biol Chem 287(17):13508–13509. doi:10.1074/jbc.R112.355933 PubMedCrossRefGoogle Scholar
  23. Han L-J, Yang S-P, Fu L–L, Gao H-L (2011) Hexaaquacobalt(II) bis(5-acetyl-2-hydroxybenzoate) dihydrate. Acta Crystallogr E 67(12):m1733. doi:10.1107/S1600536811046678 CrossRefGoogle Scholar
  24. Head IM (1998) Bioremediation: towards a credible technology. Microbiology 144:599–608CrossRefGoogle Scholar
  25. Hebes SE, Schwall IR (1978) Microbial degradation of polycyclic aromatic hydrocarbons in pristine and petroleum contaminated sediments. Appl Environ Microb 35:306–316Google Scholar
  26. Imhoff JF, Bias-Imhoff U (1995) Lipids, quinines and fatty acids of anoxygenic phototropic bacteria. In: Blankenship RE, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 179–205Google Scholar
  27. Italiano F, De Leo F, Pisani F, Ceci L, Gallerani R, Zolla L, Rinalducci S, Gio L (2007) Effect of cobalt ions on the soluble proteome of Rhodobacter sphaeroides carotenoidless mutant. Photosynth Res 91(2–3):303Google Scholar
  28. Italiano F, Pisani F, De Leo F, Ceci L, Gallerani R, Zolla L, Rinalducci S, Giotta L, Milano F, Agostiano A, Trotta M (2008) Effect of cobalt ions on the soluble proteome of a Rhodobacter sphaeroides carotenoidless mutant. In: Allen JF, Gantt E, Goldbeck J, Osmond B (eds) Photosynthesis. Energy from the sun: 14th international congress on photosynthesis, vol 1. Springer, Dordrecht, pp 1479–1484CrossRefGoogle Scholar
  29. Italiano F, Buccolieri A, Giotta L, Agostiano A, Valli L, Milano F, Trotta M (2009) Response of the carotenoidless mutant Rhodobacter sphaeroides growing cells to cobalt and nickel exposure. Int Biodeterior Biodegrad 63:948–957CrossRefGoogle Scholar
  30. Italiano F, D’Amici GM, Rinalducci S, De Leo F, Zolla L, Gallerani R, Trotta M, Ceci LR (2011) The photosynthetic membrane proteome of Rhodobacter sphaeroides R-26.1 exposed to cobalt. Res Microbiol 162(5):520–527PubMedCrossRefGoogle Scholar
  31. Italiano F, Rinalducci S, Agostiano A, Zolla L, De Leo F, Ceci LR, Trotta M (2012) Changes in morphology, cell wall composition and soluble proteome in Rhodobacter sphaeroides cells exposed to chromate. Biometals 25(5):939–949. doi:10.1007/s10534-012-9561-7 PubMedCrossRefGoogle Scholar
  32. Jacobs G, Patterson PM, Zhang Y, Das T, Li J, Davis BH (2002) Fischer–Tropsch synthesis: deactivation of noble metal-promoted Co/Al2O3 catalysts. Appl Catal A 233(1–2):215–226. doi:http://dx.doi.org/10.1016/S0926-860X(02)00147-3
  33. Jennette KW (1981) The role of metals in carcinogenesis: biochemistry and metabolism. Environ Health Perspect 40:233–252PubMedCrossRefGoogle Scholar
  34. Juhin A, de Groot F, Vankó G, Calandra M, Brouder C (2010) Angular dependence of core hole screening in LiCoO2: a DFT+U calculation of the oxygen and cobalt K-edge X-ray absorption spectra. Phys Rev B 81(11):115115CrossRefGoogle Scholar
  35. Kantar C, Demiray H, Dogan NM, Dodge CJ (2011) Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: I. Cr(III) complexation with EPS in aqueous solution. Chemosphere 82(10):1489–1495. doi:http://dx.doi.org/10.1016/j.chemosphere.2011.01.009 Google Scholar
  36. Kasprzak K (1991) The role of oxidative damage in metal carcinogenicity. Chem Res Toxicol 4(6):604–615PubMedCrossRefGoogle Scholar
  37. Kiley PJ, Kaplan S (1988) Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides. Microbiol Rev 52(1):50–69PubMedGoogle Scholar
  38. Kobayashi M, Shimizu S (1999) Cobalt proteins. Eur J Biochem 261(1):1–9PubMedCrossRefGoogle Scholar
  39. Leonard SM, Gannett P, Rojanasakul Y, Schwegler-Berry D, Castranova V, Vallyathan V, Shi X (1998) Cobalt-mediated generation of reactive oxygen species and its possible mechanism. J Inorg Biochem 70(3–4):239–244PubMedCrossRefGoogle Scholar
  40. Losurdo L, Italiano F, Trotta M, Gallerani R, Luigi RC, De Leo F (2011) Assessment of an internal reference gene in Rhodobacter sphaeroides grown under cobalt exposure. J Basic Microbiol 50(3):302–305CrossRefGoogle Scholar
  41. Martinezluque M, Dobao MM, Castillo F (1991) Characterization of the assimilatory and dissimilatory nitrate-reducing systems in Rhodobacter: a comparative-study. FEMS Microbiol Lett 83(3):329–334. doi:10.1111/j.1574-6968.1991.tb04485.x Google Scholar
  42. Mishra A, Malik A (2013) Recent advances in microbial metal bioaccumulation. Crit Rev Environ Sci Technol 43(11):1162–1222. doi:10.1080/10934529.2011.627044 CrossRefGoogle Scholar
  43. Mishra B, Boyanov MI, Bunker BA, Kelly SD, Kemner KM, Nerenberg R, Read-Daily BL, Fein JB (2009) An X-ray absorption spectroscopy study of Cd binding onto bacterial consortia. Geochim Cosmochim Acta 73(15):4311–4325. doi:http://dx.doi.org/10.1016/j.gca.2008.11.032 Google Scholar
  44. Moen A, Nicholson DG, Rnning M, Lamble GM, Lee J-F, Emerich H (1997) X-Ray absorption spectroscopic study at the cobalt K-edge on the calcination and reduction of the microporous cobalt silicoaluminophosphate catalyst CoSAPO-34. J Chem Soc Faraday Trans 93(22):4071–4077CrossRefGoogle Scholar
  45. Moore MD, Kaplan S (1992) Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J Bacteriol 174(5):1505–1514PubMedGoogle Scholar
  46. Murtaza S, Ruetz M, Gruber K, Kräutler B (2010) Isovitamin B12: a vitamin B12 derivative that flips its tail. Chem Euro J 16(36):10984–10988. doi:10.1002/chem.201001616 CrossRefGoogle Scholar
  47. Myllykallio H, Zannoni D, Daldal F (1999) The membrane-attached electron carrier cytochrome c(y) from Rhodobacter sphaeroides is functional in respiratory but not in photosynthetic electron transfer. Proc Natl Acad Sci USA 96(8):4348–4353. doi:10.1073/pnas.96.8.4348 PubMedCrossRefGoogle Scholar
  48. Nevin R (2000) How lead exposure relates to temporal changes in IQ, violent crime, and unwed pregnancy. Environ Res 83(1):1–22. doi:http://dx.doi.org/10.1006/enrs.1999.4045 Google Scholar
  49. Newville M, Līviņš P, Yacoby Y, Rehr JJ, Stern EA (1993) Near-edge X-ray-absorption fine structure of Pb: a comparison of theory and experiment. Phys Rev B 47(21):14126–14131CrossRefGoogle Scholar
  50. Okamoto S, Eltis LD (2011) The biological occurrence and trafficking of cobalt. Metallomics 3(10):963–970. doi:10.1039/c1mt00056j PubMedCrossRefGoogle Scholar
  51. Pisani F, Italiano F, de Leo F, Gallerani R, Rinalducci S, Zolla L, Agostiano A, Ceci LR, Trotta M (2009) Soluble proteome investigation of cobalt effect on the carotenoidless mutant of Rhodobacter sphaeroides. J Appl Microbiol 106(1):338–349PubMedCrossRefGoogle Scholar
  52. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12(4):537–541. doi:10.1107/S0909049505012719 PubMedCrossRefGoogle Scholar
  53. Sardaro A, Castagnolo M, Trotta M, Italiano F, Milano F, Cosma P, Agostiano A, Fini P (2013) Isothermal microcalorimetry of the metabolically versatile bacterium Rhodobacter sphaeroides. J Therm Anal Calorim 112(1):505–511. doi:10.1007/s10973-012-2895-0 CrossRefGoogle Scholar
  54. Schultz JE, Weaver PF (1982) Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata. J Bacteriol 149(1):181–190PubMedGoogle Scholar
  55. Sobolev AN, Miminoshvili EB, Miminoshvili KE, Sakvarelidze TN (2003) Cobalt diacetate tetrahydrate. Acta Crystallogr E 59(10):m836–m837. doi:10.1107/S1600536803019093 CrossRefGoogle Scholar
  56. Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26(4):327–338PubMedGoogle Scholar
  57. Wang H, Gao S, Ng SW (2011) Hexaaquacobalt(II) bis(2,2′-sulfanediyldiacetato-[kappa]3O, S, O’)cobaltate(II) tetrahydrate. Acta Crystallogr E 67(11):m1521. doi:10.1107/S1600536811040979 CrossRefGoogle Scholar
  58. Weckesser J, Mayer H, Schultz G (1995) Anoxygenic phototrophic bacteria: model organisms for studies on cell wall macromolecules. In: Blankenship RE, Madiga MT, Bauer CE (eds) Anoxygenic photosyntetic bacteria. Advances in photosynthesis, vol 2. Kluwer, Dordrecht, pp 207–230CrossRefGoogle Scholar
  59. Xia K, Bleam W, Helmke PA (1997) Studies of the nature of binding sites of first row transition elements bound to aquatic and soil humic substances using X-ray absorption spectroscopy. Geochim Cosmochim Acta 61(11):2223–2235. doi:http://dx.doi.org/10.1016/S0016-7037(97)00080-X
  60. Zabinsky SI, Rehr JJ, Ankudinov A, Albers RC, Eller MJ (1995) Multiple-scattering calculations of X-ray-absorption spectra. Phys Rev B 52(4):2995–3009CrossRefGoogle Scholar
  61. Zhang X-L, Ng SW (2005) Hexaaquacobalt(II) bis(6-hydroxypyridine-3-carboxylate). Acta Crystallogr E 61(6):m1140–m1141. doi:10.1107/S1600536805014911 CrossRefGoogle Scholar
  62. Zhang L-W, Gao S, Ng SW (2011) Hexaaquacobalt(II) bis[4-(pyridin-2-ylmethoxy)benzoate] dihydrate. Acta Crystallogr E 67(11):m1519. doi:10.1107/S1600536811040931 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Benny D. Belviso
    • 1
  • Francesca Italiano
    • 2
  • Rocco Caliandro
    • 1
  • Benedetta Carrozzini
    • 1
  • Alessandra Costanza
    • 3
  • Massimo Trotta
    • 2
  1. 1.Istituto di CristallografiaConsiglio Nazionale delle RicercheBariItaly
  2. 2.Istituto per i Processi Chimico FisiciConsiglio Nazionale delle RicercheBariItaly
  3. 3.Dipartimento di BiologiaUniversità Aldo Moro di BariBariItaly

Personalised recommendations