, Volume 26, Issue 3, pp 489–505 | Cite as

Influence of arbuscular mycorrhizal fungi (AMF) on zinc biogeochemistry in the rhizosphere of Lindenbergia philippensis growing in zinc-contaminated sediment

  • Thanchanok Kangwankraiphaisan
  • Kallaya SuntornvongsagulEmail author
  • Prakitsin Sihanonth
  • Wantana Klysubun
  • Geoffrey Michael Gadd


The association of arbuscular mycorrhizal fungi (AMF) with the roots of Lindenbergia philippensis (Cham.) Benth., sampled from a Zn-contaminated settling pond at a zinc smelter, significantly enhanced Zn accumulation (72,540 ± 5,092 mg kg−1 dry weight) in rhizosphere sediment amended with 1,000 mg L−1 of Zn sulfate solution compared to fungicide-treatments that suppressed AMF colonization. This can be explained by a significant proportion of Zn being found in rectangular crystals that were associated with the root mucilaginous sheath. Despite this, all treatments maintained the same Zn coordination geometry in both Zn oxidation state and the coordinated neighbouring atoms. X-ray absorption spectroscopy (XAS) showed a Zn(II) oxidation state as a core atom and associated with six oxygen atoms symmetrically arranged in an octahedral coordination and coordinated with sulfur. The results may indicate a role for AMF in enhancing Zn immobilization in the rhizosphere of indigenous plants that successfully colonize Zn mining and smelting disposal sites.


Zinc Arbuscular mycorrhizal fungi (AMF) Biogeochemical mechanisms Rhizosphere Zinc immobilization Zn coordination 



This research was financially supported by the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), and the Graduate School, and supported as part of the Thai Research Fund (MRG5180311). It is also supported by instrumental and laboratory services of the Center of Excellence for Environmental and Hazardous Waste Management, the Environmental Research Institute, the Department of Microbiology, and the Department of Botany, Chulalongkorn University, the Scientific Technological Research Equipment Center, and Synchrotron Light Research Institute, Thailand. GMG gratefully acknowledges receipt of support from the Royal Society of Edinburgh (International Exchange Programme).


  1. Alloway BJ (2008) Zinc in soils and crop nutrition. Fertilizer use, 2nd edn. IZA, IFA, ParisGoogle Scholar
  2. Andrade SA, Gratao PL, Schiavinato MA, Silveira AP, Azevedo RA, Mazzafera P (2009) Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Chemosphere 75:1363–1370CrossRefPubMedGoogle Scholar
  3. Arcon I, Piccolo O, Paganelli S, Baldi F (2012) XAS analysis of a nanostructured iron polysaccharide produced anaerobically by a strain of Klebsiella oxytoca. Biometals 25:875–881CrossRefPubMedGoogle Scholar
  4. Audet P, Charest C (2006) Effects of AM colonization on “wild tobacco” plants grown in zinc-contaminated soil. Mycorrhiza 16:277–283CrossRefPubMedGoogle Scholar
  5. Audet P, Charest C (2007) Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta-analytical and conceptual perspectives. Environ Pollut 147:609–614CrossRefPubMedGoogle Scholar
  6. Azzarello E, Pandolfi C, Giordano C, Rossi M, Mugnai S, Mancuso S (2012) Ultramorphological and physiological modifications induced by high zinc levels in Paulownia tomentosa. Environ Exp Bot 81:11–17CrossRefGoogle Scholar
  7. Baird JM, Walley FL, Shirtliffe SJ (2010) Arbuscular mycorrhizal fungi colonization and phosphorus nutrition in organic field pea and lentil. Mycorrhiza 20:541–549CrossRefPubMedGoogle Scholar
  8. Bernard C, LefÈBvre C (2001) The Zn biogeochemistry of Armeria Martima (Mill.) Wild.: within and between population studies. Belgian J Bot 134:21–28Google Scholar
  9. Berry A, O’Neill H, Jayasuriya K, Campbell S, Foran G (2003) XANES calibrations for the oxidation state of iron in silicate glass. Am Min 88:967–977Google Scholar
  10. Bi YL, Li XL, Christie P (2003) Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from a low-phosphorus soil amended with zinc and phosphorus. Chemosphere 50:831–837CrossRefPubMedGoogle Scholar
  11. Bot A, Benites J (2005) The importance of soil organic matter: key to drought-resistant soil and sustained food production. FAO of the United Nations, RomeGoogle Scholar
  12. Brady NC, Weil RR (2000) Elements of the nature and properties of soils. Prentice Hall, New JerseyGoogle Scholar
  13. Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agricultural Research (ACIAR), CanberraGoogle Scholar
  14. Bunker G (2010) Introduction to XAFS. Cambridge University Press, New YorkCrossRefGoogle Scholar
  15. Cabala J, Teper L (2007) Metalliferous constituents of rhizosphere soils contaminated by Zn–Pb mining in Southern Poland. Water Air Soil Poll 178:351–362CrossRefGoogle Scholar
  16. Cabala J, Krupa P, Misz-Kennan M (2008) Heavy Metals in mycorrhizal rhizospheres contaminated by Zn–Pb mining and smelting around Olkusz in Southern Poland. Water Air Soil Poll 199:139–149CrossRefGoogle Scholar
  17. Carter R, Gregorich EG (2007) Soil sampling and methods of analysis, 2nd edn. Taylor & Francis, Baca RatonCrossRefGoogle Scholar
  18. Cerrato JM, Barrows CJ, Blue LY, Lezama-Pacheco JS, Bargar JR, Giammar DE (2012) Effect of Ca2+ and Zn2+ on UO2 dissolution rates. Environ Sci Technol 46:2731–2737CrossRefPubMedGoogle Scholar
  19. Chaboud A, Rougier M (1990) Comparison of maize root mucilages isolated from root exudates and root surface extracts by complementary cytological and biochemical investigations. Protoplasma 156:163–173CrossRefGoogle Scholar
  20. Chen BD, Zhu YG, Duan J, Xiao XY, Smith SE (2007) Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environ Pollut 147:374–380CrossRefPubMedGoogle Scholar
  21. Christie P, Li X, Chen B (2004) Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261:209–217CrossRefGoogle Scholar
  22. Conradson SD (2000) XAFS: a technique to probe local structure. Los Alamos Sci 26:422–435Google Scholar
  23. Cornell R, Schwertmann U (2006) The iron oxides: structure, properties, reactions, occurrences and uses. John Wiley & Sons, DarmstadtGoogle Scholar
  24. Damme AV, Degryse F, Smolders E, Sarret G, Dewit J, Swennen R, Manceau A (2010) Zinc speciation in mining and smelter contaminated overbank sediments by EXAFS spectroscopy. Geochim Cosmochim Acta 74:3707–3720CrossRefGoogle Scholar
  25. David M (2009) Illinois master gardener manual. College of Agriculture, Consumer and Environmental Sciences, University of Illinois, IllinoisGoogle Scholar
  26. David C, Stephan K (2007) Function of siderophores in the plant rhizosphere. In: The rhizosphere. Soils, plants, and the environment. CRC Press, FloridaGoogle Scholar
  27. Dessureault-Rompré J, Luster J, Schulin R, Tercier-Waeber M-L, Nowack B (2010) Decrease of labile Zn and Cd in the rhizosphere of hyperaccumulating Thlaspi caerulescens with time. Environ Pollut 158:1955–1962CrossRefPubMedGoogle Scholar
  28. Duncan D (1955) Multiple range and multiple F tests. Biometrics 11:1–42CrossRefGoogle Scholar
  29. Fomina MA, Alexander IJ, Hillier S, Gadd GM (2004) Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiol J 21:351–366CrossRefGoogle Scholar
  30. Fomina MA, Alexander IJ, Colpaert JV, Gadd GM (2005) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37:851–866CrossRefGoogle Scholar
  31. Fomina M, Charnock JM, Hillier S, Alexander IJ, Gadd GM (2006) Zinc phosphate transformations by the Paxillus involutus/pine ectomycorrhizal association. Microb Ecol 52:322–333CrossRefPubMedGoogle Scholar
  32. Fomina M, Charnock J, Bowen AD, Gadd GM (2007) X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi. Environ Microbiol 9:308–321CrossRefPubMedGoogle Scholar
  33. Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49CrossRefPubMedGoogle Scholar
  34. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643CrossRefPubMedGoogle Scholar
  35. Gadd GM, Rhee YJ, Stephenson K, Wei Z (2012) Geomycology: metals, actinides and biominerals. Environ Microbiol Rep 4:270–296CrossRefGoogle Scholar
  36. Galvan GA, Paradi I, Burger K, Baar J, Kuyper TW, Scholten OE, Kik C (2009) Molecular diversity of arbuscular mycorrhizal fungi in onion roots from organic and conventional farming systems in the Netherlands. Mycorrhiza 19:317–328CrossRefPubMedGoogle Scholar
  37. Garcia G, Penas JM, Manteca JI (2008) Zn mobility and geochemistry in surface sulfide mining soils from SE Spain. Environ Res 106:333–339CrossRefPubMedGoogle Scholar
  38. Gardea-Torresdey J, Peraltavidea J, Delarosa G, Parsons J (2005) Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coord Chem Rev 249:1797–1810CrossRefGoogle Scholar
  39. Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56CrossRefGoogle Scholar
  40. Gregorich EG, Carter MR (1997) Soil quality for crop production and ecosystem health. Elsevier, AmsterdamGoogle Scholar
  41. Hayes SM, O’Day PA, Webb SM, Maier RM, Chorover J (2011) Changes in zinc speciation with mine tailings acidification in a semiarid weathering environment. Environ Sci Technol 45:7166–7172CrossRefPubMedGoogle Scholar
  42. Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146CrossRefPubMedGoogle Scholar
  43. Hirner AV, Emons H (2004) Organic metal and metalloid species in the environment: analysis, distribution, processes and toxicological evaluation. Springer, HeidelbergCrossRefGoogle Scholar
  44. Huang PM, Gobran GR (2005) Biogeochemistry of trace elements in the rhizosphere. Elsevier, AmsterdamGoogle Scholar
  45. Isaure M-P, Laboudigue A, Manceau A, Sarret G, Tiffreau C, Trocellier P, Lamble G, Hazemann J-L, Chateigner D (2002) Quantitative Zn speciation in a contaminated dredged sediment by μ-PIXE, μ-SXRF, EXAFS spectroscopy and principal component analysis. Geochim Cosmochim Acta 66:1549–1567CrossRefGoogle Scholar
  46. Isaure M-P, Manceau A, Geoffroy N, Laboudigue A, Tamura N, Marcus MA (2005) Zinc mobility and speciation in soil covered by contaminated dredged sediment using micrometer-scale and bulk-averaging X-ray fluorescence, absorption and diffraction techniques. Geochim Cosmochim Acta 69:1173–1198CrossRefGoogle Scholar
  47. Iwasawa (1996) X-ray absorption fine structure (XAFS) for catalysts and surfaces. World Scientific Publishing Co. Pte. Ltd., SingaporeCrossRefGoogle Scholar
  48. Jacquat O, Voegelin A, Kretzschmar R (2009) Local coordination of Zn in hydroxy-interlayered minerals and implications for Zn retention in soils. Geochim Cosmochim Acta 73:348–363CrossRefGoogle Scholar
  49. James BR, Bartlett RJ (1984) Nitrification in soil suspensions treated with chromium (III, VI) salts or tannery wastes. Soil Biol Biochem 16:293–295CrossRefGoogle Scholar
  50. Jankong P, Visoottiviseth P (2008) Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Chemosphere 72:1092–1097CrossRefPubMedGoogle Scholar
  51. Jha MK, Kumar V, Singh RJ (2001) Review of hydrometallurgical recovery of zinc from industrial wastes. Resour Conserv Recycl 33:1–22CrossRefGoogle Scholar
  52. Kelly RA, Andrews JC, DeWitt JG (2002) An X-ray absorption spectroscopic investigation of the nature of the zinc complex accumulated in Datura innoxia plant tissue culture. Microchem J 71:231–245CrossRefGoogle Scholar
  53. Klute A, Page AL (1986) Methods of soil analysis: physical and mineralogical methods. American Society of Agronomy, MichiganGoogle Scholar
  54. Klysubun W, Sombunchoo P, Deenan W, Kongmark C (2012) Performance and status of beamline BL8 at SLRI for X-ray absorption spectroscopy. J Synchrotron Radiat 19:930–936CrossRefPubMedGoogle Scholar
  55. Koningsberger DC, Prins R (1988) X-ray absorption: principles, applications, techniques of EXAFS. SEXAFS and XANES, Wiley, New YorkGoogle Scholar
  56. Kuo D-H, Chang H, Cheng J-Y (2011) Polycrystalline ZnO nanowires obtained by pyrolizing zinc oxalate-based nanowires from template-assisted solutions. Int J Nanosci 10:471–478CrossRefGoogle Scholar
  57. Li X, Christie P (2001) Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere 42:201–207CrossRefPubMedGoogle Scholar
  58. Lingua G, Franchin C, Todeschini V, Castiglione S, Biondi S, Burlando B, Parravicini V, Torrigiani P, Berta G (2008) Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environ Pollut 153:137–147CrossRefPubMedGoogle Scholar
  59. Manceau A, Lanson B, Schlegel M, Harge J, Musso M, Eybert-Berard L, Hazemann J, Chateigner D, Lamble GM (2000) Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy. Am J Sci 300:289–343CrossRefGoogle Scholar
  60. Marschner H (1995) The soil-root interface (rhizosphere) in relation to mineral nutrition. In: Mineral nutrition of higher plants, 2nd edn. Academic Press, LondonGoogle Scholar
  61. Marschner H (2002) Mineral nutrition of higher plants. 5th edn. Academic Press, LondonGoogle Scholar
  62. Martinez CE, Bazilevskaya KA, Lanzirotti A (2006) Zinc coordination to multiple ligand atoms in organic-rich surface soils. Environ Sci Technol 40:5688–5695CrossRefPubMedGoogle Scholar
  63. Marx ES, Hart J, Stevens RG (1999) Soil test interpretation. U.S. Department of Agriculture, OregonGoogle Scholar
  64. Mohamed AMO, Antia HE (1998) Geoenvironmental engineering. Elsevier, AmsterdamGoogle Scholar
  65. Morel JL, Mench M, Guckert A (1986) Measurement of Pb2+, Cu2+ and Cd2+ binding with mucilage exudates from maize (Zea mays L.) roots. Biol Fertil Soils 2:29–34CrossRefGoogle Scholar
  66. Mukerji KG, Manoharachary C, Singh J (2006) Microbial activity in the rhizosphere. Springer, HeidelbergCrossRefGoogle Scholar
  67. Nachtegaal M, Marcus MA, Sonke JE, Vangronsveld J, Livi KJT, van Der Lelie D, Sparks DL (2005) Effects of in situ remediation on the speciation and bioavailability of zinc in a smelter contaminated soil. Geochim Cosmochim Acta 69:4649–4664CrossRefGoogle Scholar
  68. Panfili F, Manceau A, Sarret G, Spadini L, Kirpichtchikova T, Bert V, Laboudigue A, Marcus MA, Ahamdach N, Libert MF (2005) The effect of phytostabilization on Zn speciation in a dredged contaminated sediment using scanning electron microscopy, X-ray fluorescence, EXAFS spectroscopy, and principal components analysis. Geochim Cosmochim Acta 69:2265–2284CrossRefGoogle Scholar
  69. Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell B 41:1665–1677CrossRefGoogle Scholar
  70. Prietzel J, Botzaki A, Tyufekchieva N, Thieme J, Thieme J, Klysubun W (2011) Sulfur speciation in soil by S K-edge XANES spectroscopy: comparison of spectral deconvolution and linear combination fitting. Environ Sci Technol 45:2878–2886CrossRefPubMedGoogle Scholar
  71. Qin R, Hirano Y, Brunner I (2007) Exudation of organic acid anions from poplar roots after exposure to Al, Cu and Zn. Tree Physiol 27:313–320CrossRefPubMedGoogle Scholar
  72. Rao SRR (2011) Resource recovery and recycling from metallurgical wastes. Elsevier, AmsterdamGoogle Scholar
  73. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541CrossRefPubMedGoogle Scholar
  74. Redon P-O, Béguiristain T, Leyval C (2008) Influence of Glomus intraradices on Cd partitioning in a pot experiment with Medicago truncatula in four contaminated soils. Soil Biol Biochem 40:2710–2712CrossRefGoogle Scholar
  75. Ryan J, Estefan G, Rashid A (2001) Soil and plant analysis laboratory manual, 2nd edn. ICARDA, International Center for Agricultural Research in the dry areas, SyriaGoogle Scholar
  76. Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ (1999) Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ Sci Technol 33:713–717CrossRefGoogle Scholar
  77. Sarret G, Schroeder WH, Marcus MA, Geoffroy N, Manceau A (2003) Localization and speciation of Zn in mycorrihizd roots by μSXRF and μEXAFS. J Phys IV 107:1193–1196Google Scholar
  78. Sham TK (2002) Chemical applications of synchrotron radiation. 2. X-ray applications. World Scientific Publishing Co. Pte. Ltd., SingaporeGoogle Scholar
  79. Sharif M, Moawad AM (2006) Arbuscular mycorrhiza lincidence and infectivity of crops in North West frontier province of Pakistan. World J Agric Sci 2:123–132Google Scholar
  80. Shorrocks VM, Alloway BJ (1988) Copper in plant, animal and human nutrition. Copper Development Association, Hemel HempsteadGoogle Scholar
  81. Srivastava S, Prakash S, Srivastava MM (1999) Studies on mobilization of chromium with reference to its plant availability—role of organic acids. Biometals 12:201–207CrossRefGoogle Scholar
  82. SSDS (1993) Soil survey manual, vol 18. US Department of Agriculture, Washington, DCGoogle Scholar
  83. St-Cyr L, Campbell PGC (1996) Metals (Fe, Mn, Zn) in the root plaque of submerged aquatic plants collected in situ: relations with metal concentrations in the adjacent sediments and in the root tissue. Biogeochemistry 33:45–76CrossRefGoogle Scholar
  84. Suntornvongsagul K (2005) Effect of heavy metals on salt march biota. Dissertation, New Jersey Institute of Technology, New JerseyGoogle Scholar
  85. Suntornvongsagul K, Burke DJ, Hamerlynck EP, Hahn D (2007) Fate and effects of heavy metals in salt marsh sediments. Environ Pollut 149:79–91Google Scholar
  86. Suntornvongsagul K, Burke D, Hahn D (2007) Uptake and translocation of heavy metals in salt marsh sediments by Spartina patens. Bull Environ Contam Toxicol 78:275–279Google Scholar
  87. Suntornvongsagul K, Kangwankraiphaisan T, Piapukiew J, Sihanonth P, Gadd GM (2011) Heavy metal crystallization in the rhizosphere of Lindenbergia philippensis (Cham.) Benth. on zinc smelter sediment. In: 17th Thai–Korean Conference on Environmental Engineering, BangkokGoogle Scholar
  88. Taheri WI, Bever JD (2010) Adaptation of plants and arbuscular mycorrhizal fungi to coal tailings in Indiana. Appl Soil Ecol 45:138–143CrossRefGoogle Scholar
  89. Terzano R, Chami ZA, Vekemans B, Janssens K, Miano TM, Ruggiero P (2007) μ-XANES speciation of Zn in rhizospheric soil and in edible plants grown on a polluted soil amended with compost. In: HASYLAB Jahresbericht 2006/Schneider J (ed), HamburgGoogle Scholar
  90. Terzano R, Al Chami Z, Vekemans B, Janssens K, Miano T, Ruggiero P (2008) Zinc distribution and speciation within rocket plants (Eruca vesicaria L. Cavalieri) grown on a polluted soil amended with compost as determined by XRF microtomography and Micro-XANES. J Agric Food Chem 56:3222–3231CrossRefPubMedGoogle Scholar
  91. USEPA (2004) Quality standard soil quality standard for other purposes. Test methods of evaluating solid waste, physical/chemical methods (SW-846), GeorgiaGoogle Scholar
  92. Vangronsveld J, Van Assche F, Clijsters H (1995) Reclamation of a bare industrial area contaminated by non-ferrous metals: in situ metal immobilization and revegetation. Environ Pollut 87:51–59CrossRefPubMedGoogle Scholar
  93. Vivas A, Biró B, Ruíz-Lozano JM, Barea JM, Azcón R (2006) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62:1523–1533CrossRefPubMedGoogle Scholar
  94. Voegelin A, Pfister S, Scheinost AC, Marcus MA, Kretzschmar R (2005) Changes in zinc speciation in field soil after contamination with zinc oxide. Environ Sci Technol 39:6616–6623CrossRefPubMedGoogle Scholar
  95. Vogel-Mikuš K, Pongrac P, Kump P, Nečemer M, Regvar M (2006) Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139:362–371CrossRefPubMedGoogle Scholar
  96. Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408CrossRefGoogle Scholar
  97. Wu FY, Bi YL, Leung HM, Ye ZH, Lin XG, Wong MH (2010) Accumulation of As, Pb, Zn, Cd and Cu and arbuscular mycorrhizal status in populations of Cynodon dactylon grown on metal-contaminated soils. Appl Soil Ecol 44:213–218CrossRefGoogle Scholar
  98. Xu W-H, Liu H, Ma Q-F, Xiong Z-T (2007) Root exudates, rhizosphere Zn fractions, and Zn accumulation of ryegrass at different soil Zn levels. Pedosphere 17:389–396CrossRefGoogle Scholar
  99. Yang J, Ye Z (2009) Metal accumulation and tolerance in wetland plants. Front Biol 4:282–288CrossRefGoogle Scholar
  100. Yankwich PE, Zavitsanos PD (1964) Pyrolysis of zinc oxalate: kinetics and stoichiometry. J Phys Chem 68:457–463CrossRefGoogle Scholar
  101. Zarei M, Saleh-Rastin N, Jouzani GS, Savaghebi G, Buscot F (2008) Arbuscular mycorrhizal abundance in contaminated soils around a zinc and lead deposit. Eur J Soil Biol 44:381–391CrossRefGoogle Scholar
  102. Zarei M, Hempel S, Wubet T, Schafer T, Savaghebi G, Jouzani GS, Nekouei MK, Buscot F (2010) Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ Pollut 158:2757–2765CrossRefPubMedGoogle Scholar
  103. Zhao LYL, Schulin R, Nowack B (2007) The effects of plants on the mobilization of Cu and Zn in soil columns. Environ Sci Technol 41:2770–2775CrossRefPubMedGoogle Scholar
  104. Zhu Y, Christie P, Laidlaw AS (2001) Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere 42:193–199CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Thanchanok Kangwankraiphaisan
    • 1
    • 2
  • Kallaya Suntornvongsagul
    • 2
    • 3
    Email author
  • Prakitsin Sihanonth
    • 4
  • Wantana Klysubun
    • 5
  • Geoffrey Michael Gadd
    • 6
  1. 1.International Postgraduate Programs in Environmental Management, Graduate SchoolChulalongkorn UniversityBangkokThailand
  2. 2.Center of Excellence for Environmental and Hazardous Waste Management, Chulalongkorn UniversityBangkokThailand
  3. 3.Environmental Research Institute, Chulalongkorn UniversityBangkokThailand
  4. 4.Department of MicrobiologyFaculty of Science, Chulalongkorn UniversityBangkokThailand
  5. 5.Synchrotron Light Research InstituteNakhon RatchasimaThailand
  6. 6.Geomicrobiology GroupCollege of Life Sciences, University of DundeeDundeeScotland, UK

Personalised recommendations