BioMetals

, Volume 25, Issue 5, pp 939–949 | Cite as

Changes in morphology, cell wall composition and soluble proteome in Rhodobacter sphaeroides cells exposed to chromate

  • Francesca Italiano
  • Sara Rinalducci
  • Angela Agostiano
  • Lello Zolla
  • Francesca De Leo
  • Luigi R. Ceci
  • Massimo Trotta
Article

Abstract

The response of the carotenoidless Rhodobacter sphaeroides mutant R26 to chromate stress under photosynthetic conditions is investigated by biochemical and spectroscopic measurements, proteomic analysis and cell imaging. Cell cultures were found able to reduce chromate within 3–4 days. Chromate induces marked changes in the cellular dimension and morphology, as revealed by atomic force microscopy, along with compositional changes in the cell wall revealed by infrared spectroscopy. These effects are accompanied by significant changes in the level of several proteins: 15 proteins were found up-regulated and 15 down-regulated. The protein content found in chromate exposed cells is in good agreement with the biochemical, spectroscopic and microscopic results. Moreover at the present stage no specific chromate-reductase could be found in the soluble proteome, indicating that detoxification of the pollutant proceeds via aspecific reductants.

Keywords

Chromate reduction Photosynthesis Rhodobacter sphaeroides Two-dimensional gel electrophoresis Atomic force microscopy Attenuated total reflection-fourier transformed infra red spectroscopy 

Notes

Acknowledgments

The authors wish to thank Mr. Giovanni Lasorella for his help with AFM measurements. Paola Nitti, Giacomo Colasuonno and Francesco Di Paolo are gratefully acknowledged. Livia Giotta is thanked for suggestions in the interpretation of ATR-FTIR measurements. Support for this work was obtained by the Italian Ministry of Research Education and Education (Prin 2009) and by COST Action CM0902 Molecular machinery for ion translocation across the membrane.

Supplementary material

10534_2012_9561_MOESM1_ESM.doc (112 kb)
Supplementary material 1 (DOC 112 kb)

References

  1. Ackerley DF, Gonzalez CF, Keyhan M, Blake R, Matin A (2004) Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ Microbiol 6(8):851–860PubMedCrossRefGoogle Scholar
  2. Ackerley DF, Barak Y, Lynch SV, Curtin J, Matin A (2006) Effect of chromate stress on Escherichia coli K-12. J Bacteriol 188(9):3371–3381PubMedCrossRefGoogle Scholar
  3. Aguilar-Barajas E, Diaz-Perez C, Ramirez-Diaz MI, Riveros-Rosas H, Cervantes C (2011) Bacterial transport of sulfate, molybdate, and related oxyanions. Biometals 24(4):687–707. doi:10.1007/s10534-011-9421-x PubMedCrossRefGoogle Scholar
  4. Barceloux DG (1999) Chromium. J Toxicol Clin Toxicol 37(2):173–194PubMedCrossRefGoogle Scholar
  5. Borsetti F, Toninello A, Zannoni D (2003) Tellurite uptake by cells of the facultative phototroph Rhodobacter capsulatus is a delta pH-dependent process. FEBS Lett 554:315–318PubMedCrossRefGoogle Scholar
  6. Brown SD, Thompson MR, Verberkmoes NC, Chourey K, Shah M, Zhou J, Hettich RL, Thompson DK (2006) Molecular dynamics of the Shewanella oneidensis response to chromate stress. Mol Cell Proteomics 5(6):1054–1071PubMedCrossRefGoogle Scholar
  7. Buccolieri A, Italiano F, Dell’Atti A, Buccolieri G, Giotta L, Agostiano A, Milano F, Trotta M (2006) Testing the photosynthetic bacterium Rhodobacter sphaeroides as heavy metal removal tool. Ann Chim 96(3–4):195–203PubMedCrossRefGoogle Scholar
  8. Carmel-Harel O, Storz G (2000) Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54:439–461PubMedCrossRefGoogle Scholar
  9. Cervantes C, Campos-Garcia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, Moreno-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25(3):335–347PubMedCrossRefGoogle Scholar
  10. Cheung KH, Gu J-D (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodet Biodegrad 59(1):8–15CrossRefGoogle Scholar
  11. Chourey K, Thompson MR, Morrell-Falvey J, Verberkmoes NC, Brown SD, Shah M, Zhou J, Doktycz M, Hettich RL, Thompson DK (2006) Global molecular and morphological effects of 24-hour chromium(VI) exposure on Shewanella oneidensis MR-1. Appl Environ Microbiol 72(9):6331–6344PubMedCrossRefGoogle Scholar
  12. Codd R, Irwin JA, Lay PA (2003) Sialoglycoprotein and carbohydrate complexes in chromium toxicity. Curr Opin Chem Biol 7(2):213–219PubMedCrossRefGoogle Scholar
  13. Cooper S (1991) Bacterial growth and division. Academic Press, Inc., San DiegoGoogle Scholar
  14. Dos Santos Ferreira V, Rocchetta I, Conforti V, Bench S, Feldman R, Levin MJ (2007) Gene expression patterns in Euglena gracilis: insights into the cellular response to environmental stress. Gene 389(2):136–145PubMedCrossRefGoogle Scholar
  15. Giotta L, Agostiano A, Italiano F, Milano F, Trotta M (2006) Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides. Chemosphere 62(9):1490–1499PubMedCrossRefGoogle Scholar
  16. Giotta L, Mastrogiacomo D, Italiano F, Milano F, Agostiano A, Nagy K, Valli L, Trotta M (2011) Reversible binding of metal ions onto bacterial layers revealed by protonation-induced ATR-FTIR difference spectroscopy. Langmuir 27(7):3762–3773. doi:10.1021/la104868m PubMedCrossRefGoogle Scholar
  17. Guzman LM, Weiss DS, Beckwith J (1997) Domain-swapping analysis of FtsI, FtsL, and FtsQ, bitopic membrane proteins essential for cell division in Escherichia coli. J Bacteriol 179(16):5094–5103PubMedGoogle Scholar
  18. Helbig K, Bleuel C, Krauss GJ, Nies DH (2008) Glutathione and transition-metal homeostasis in Escherichia coli. J Bacteriol 190(15):5431–5438PubMedCrossRefGoogle Scholar
  19. Henne KL, Turse JE, Nicora CD, Lipton MS, Tollaksen SL, Lindberg C, Babnigg G, Giometti CS, Nakatsu CH, Thompson DK, Konopka AE (2009) Global proteomic analysis of the chromate response in Arthrobacter sp. strain FB24. J Proteome Res 8(4):1704–1716PubMedCrossRefGoogle Scholar
  20. Hesse H, Nikiforova V, Gakiere B, Hoefgen R (2004) Molecular analysis and control of cysteine biosynthesis: integration of nitrogen and sulphur metabolism. J Exp Bot 55(401):1283–1292PubMedCrossRefGoogle Scholar
  21. Hind AR, Bhargava SK, McKinnon A (2001) At the solid/liquid interface: FTIR/ATR: the tool of choice. Adv Colloid Interface Sci 93(1–3):91–114PubMedCrossRefGoogle Scholar
  22. Italiano F, Buccolieri A, Giotta L, Agostiano A, Valli L, Milano F, Trotta M (2009) Response of the carotenoidless mutant Rhodobacter sphaeroides growing cells to cobalt and nickel exposure. Int Biodeter Biodegrad 63(7):948–957CrossRefGoogle Scholar
  23. Italiano F, D’Amici GM, Rinalducci S, De Leo F, Zolla L, Gallerani R, Trotta M, Ceci LR (2011) The photosynthetic membrane proteome of Rhodobacter sphaeroides R-26.1 exposed to cobalt. Res Microbiol 162(5):520–527PubMedCrossRefGoogle Scholar
  24. Katz SA, Salem H (1993) The toxicology of chromium with respect to its chemical speciation: a review. J Appl Toxicol 13:217–224PubMedCrossRefGoogle Scholar
  25. Kiley PJ, Kaplan S (1988) Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides. Microbiol Rev 52(1):50–69PubMedGoogle Scholar
  26. Lovley DR, Phillips EJ (1994) Reduction of chromate by Desulfovibrio vulgaris and its c(3) cytochrome. Appl Environ Microbiol 60(2):726–728Google Scholar
  27. McLean JS, Beveridge TJ, Phipps D (2000) Isolation and characterization of a chromium-reducing bacterium from a chromated copper arsenate-contaminated site. Environ Microbiol 2(6):611–619PubMedCrossRefGoogle Scholar
  28. Morais PV, Branco R, Francisco R (2011) Chromium resistance strategies and toxicity: what makes Ochrobactrum tritici 5bvl1 a strain highly resistant. Biometals 24(3):401–410. doi:10.1007/s10534-011-9446-1 PubMedCrossRefGoogle Scholar
  29. Myers CR, Carstens BP, Antoline WE, Myers JM (2002) Chromium (VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J Appl Microbiol 88:98–106CrossRefGoogle Scholar
  30. Park CH, Keyhan M, Wielinga B, Fendorf S, Matin A (2000) Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol 66(5):1788–1795PubMedCrossRefGoogle Scholar
  31. Pimentel BE, Moreno-Sanchez R, Cervantes C (2002) Efflux of chromate by Pseudomonas aeruginosa cells expressing the ChrA protein. FEMS Microbiol Lett 212(2):249–254PubMedCrossRefGoogle Scholar
  32. Pisani F, Italiano F, de Leo F, Gallerani R, Rinalducci S, Zolla L, Agostiano A, Ceci LR, Trotta M (2009) Soluble proteome investigation of cobalt effect on the carotenoidless mutant of Rhodobacter sphaeroides. J Appl Microbiol 106(1):338–349Google Scholar
  33. Plaper A, Jenko-Brinovec S, Premzl A, Kos J, Raspor P (2002) Genotoxicity of trivalent chromium in bacterial cells. Possible effects on DNA topology. Chem Res Toxicol 15(7):943–949PubMedCrossRefGoogle Scholar
  34. Qiu X, Sundin GW, Wu L, Zhou J, Tiedje JM (2005) Comparative analysis of differentially expressed genes in Shewanella oneidensis MR-1 following exposure to UVC, UVB, and UVA radiation. J Bacteriol 187:3556–3564PubMedCrossRefGoogle Scholar
  35. Ramirez-Diaz MI, Diaz-Perez C, Vargas E, Riveros-Rosas H, Campos-Garcia J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21(3):321–332PubMedCrossRefGoogle Scholar
  36. Salnikov VV, Ageeva MV, Gorshkova TA (2008) Homofusion of Golgi secretory vesicles in flax phloem fibers during formation of the gelatinous secondary cell wall. Protoplasma 233(3–4):269–273. doi:10.1007/s00709-008-0011-x PubMedCrossRefGoogle Scholar
  37. Schaer-Zammaretti P, Ubbink J (2003) Imaging of lactic acid bacteria with AFM-elasticity and adhesion maps and their relationship to biological and structural data. Ultramicroscopy 97(1–4):199–208Google Scholar
  38. Schultz JE, Weaver PF (1982) Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata. J Bacteriol 149(1):181–190PubMedGoogle Scholar
  39. Shi XL, Dalal NS (1988) On the mechanism of the chromate reduction by glutathione: ESR evidence for the glutathionyl radical and an isolable Cr(V) intermediate. Biochem Biophys Res Commun 156(1):137–142PubMedCrossRefGoogle Scholar
  40. Sistrom WR, Griffiths M, Stanier RY (1956) The biology of photosynthetic bacterium which lacks colored carotenoids. J Cell Physiol 48(3):473–515PubMedCrossRefGoogle Scholar
  41. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85Google Scholar
  42. Stearns DM, Kennedy LJ, Coutney KD, Giangrande PH, Phieffer LS, Wetterhahn KE (1995) Reduction of chromium(VI) by ascorbate leads to chromium-DNA binding and DNA strand breaks in vitro. Biochemistry-US 34:910–919Google Scholar
  43. Suzuki T, Miyata N, Horitsu H, Kawai K, Takamizawa K, Tai Y, Okazaki M (1992) NAD(P) H-dependent chromium (VI) reductase of Pseudomonas ambigua G-1: a Cr(V) intermediate is formed during the reduction of Cr(VI) to Cr(III). J Bacteriol 174(16):5340–5345Google Scholar
  44. Turner RJ, Weiner JH, Taylor DE (1999) Tellurite-mediated thiol oxidation in Escherichia coli. Microbiology 145(Pt 9):2549–2557Google Scholar
  45. Vijaranakul U, Nadakavukaren MJ, de Jonge BLM, Wilkinson BJ, Jayaswal RK (1995) Increased cell size and shortened peptidoglycan interpeptide bridge of NaCl-stressed Staphylococcus aureus and their reversal by glycine betaine. J Bacteriol 177:5116–5121Google Scholar
  46. Voitkun V, Zhitkovich A, Costa M (1998) Cr(III)-mediated crosslinks of glutathione or amino acids to the DNA phosphate backbone are mutagenic in human cells. Nucleic Acids Res 26(8):2024–2030Google Scholar
  47. Wang PC, Mori T, Toda K, Ohtake H (1990) Membrane-associated chromate reductase activity from Enterobacter cloacae. J Bacteriol 172(3):1670–1672Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Francesca Italiano
    • 1
  • Sara Rinalducci
    • 2
  • Angela Agostiano
    • 1
    • 3
  • Lello Zolla
    • 2
  • Francesca De Leo
    • 4
  • Luigi R. Ceci
    • 4
  • Massimo Trotta
    • 1
  1. 1.CNR-IPCF, Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico FisiciBariItaly
  2. 2.Dipartimento di Scienze Ecologiche e Biologiche (DEB)Università della TusciaViterboItaly
  3. 3.Dipartimento di ChimicaUniversità di BariBariItaly
  4. 4.Istituto di Biomembrane e Bioenergetica (CNR)BariItaly

Personalised recommendations