BioMetals

, Volume 25, Issue 5, pp 883–892

Genetic modification of iron metabolism in mice affects the gut microbiota

  • Keren Buhnik-Rosenblau
  • Shirly Moshe-Belizowski
  • Yael Danin-Poleg
  • Esther G. Meyron-Holtz
Article

Abstract

The composition of the gut microbiota is affected by environmental factors as well as host genetics. Iron is one of the important elements essential for bacterial growth, thus we hypothesized that changes in host iron homeostasis, may affect the luminal iron content of the gut and thereby the composition of intestinal bacteria. The iron regulatory protein 2 (Irp2) and one of the genes mutated in hereditary hemochromatosis Hfe , are both proteins involved in the regulation of systemic iron homeostasis. To test our hypothesis, fecal metal content and a selected spectrum of the fecal microbiota were analyzed from Hfe−/−, Irp2−/− and their wild type control mice. Elevated levels of iron as well as other minerals in feces of Irp2−/− mice compared to wild type and Hfe−/− mice were observed. Interestingly significant variation in the general fecal-bacterial population-patterns was observed between Irp2−/− and Hfe−/− mice. Furthermore the relative abundance of five species, mainly lactic acid bacteria, was significantly different among the mouse lines. Lactobacillus (L.) murinus and L.intestinalis were highly abundant in Irp2−/− mice, Enterococcus faecium species cluster and a species most similar to Olsenella were highly abundant in Hfe-/- mice and L. johnsonii was highly abundant in the wild type mice. These results suggest that deletion of iron metabolism genes in the mouse host affects the composition of its intestinal bacteria. Further studying the relationship between gut microbiota and genetic mutations affecting systemic iron metabolism in human should lead to clinical implications.

Keywords

Iron Gut microbiota Mineral absorption Hemochromatosis Iron regulatory protein 2 (IRP2) 

References

  1. Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27(2–3):215–237PubMedCrossRefGoogle Scholar
  2. Ashida H, Ogawa M, Kim M, Mimuro H, Sasakawa C (2011) Bacteria and host interactions in the gut epithelial barrier. Nat Chem Biol 8(1):36–45PubMedCrossRefGoogle Scholar
  3. Babitt JL, Lin HY (2011) The molecular pathogenesis of hereditary hemochromatosis. Semin Liver Dis 31(3):280–292PubMedCrossRefGoogle Scholar
  4. Bailey JR, Probert CS, Cogan TA (2011) Identification and characterisation of an iron-responsive candidate probiotic. PLoS One 6(10):e26507PubMedCrossRefGoogle Scholar
  5. Barbas AS, Lesher AP, Thomas AD, Wyse A, Devalapalli AP, Lee YH, Tan HE, Orndorff PE, Bollinger RR, Parker W (2009) Altering and assessing persistence of genetically modified E. coli MG1655 in the large bowel. Exp Biol Med (Maywood) 234(10):1174–1185CrossRefGoogle Scholar
  6. Beasley FC, Marolda CL, Cheung J, Buac S, Heinrichs DE (2011) Staphylococcus aureus transporters Hts, Sir, and Sst capture iron liberated from human transferrin by Staphyloferrin A, Staphyloferrin B, and catecholamine stress hormones, respectively, and contribute to virulence. Infect Immun 79(6):2345–2355PubMedCrossRefGoogle Scholar
  7. Behrenfeld MJ, Worthington K, Sherrell RM, Chavez FP, Strutton P, McPhaden M, Shea DM (2006) Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics. Nature 442(7106):1025–1028PubMedCrossRefGoogle Scholar
  8. Benoni G, Cuzzolin L, Zambreri D, Donini M, Del Soldato P, Caramazza I (1993) Gastrointestinal effects of single and repeated doses of ferrous sulphate in rats. Pharmacol Res 27(1):73–80PubMedCrossRefGoogle Scholar
  9. Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, Zhang M, Oh PL, Nehrenberg D, Hua K, Kachman SD, Moriyama EN, Walter J, Peterson DA, Pomp D (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci USA 107(44):18933–18938PubMedCrossRefGoogle Scholar
  10. Bikandi J, San Millan R, Rementeria A, Garaizar J (2004) In silico analysis of complete bacterial genomes: PCR, AFLP-PCR and endonuclease restriction. Bioinformatics 20(5):798–799PubMedCrossRefGoogle Scholar
  11. Blaut M (2002) Relationship of prebiotics and food to intestinal microflora. Eur J Nutr 41(Suppl 1):I11–I16PubMedGoogle Scholar
  12. Braun V, Hantke K (2011) Recent insights into iron import by bacteria. Curr Opin Chem Biol 15(2):328–334PubMedCrossRefGoogle Scholar
  13. Brissot P, Bardou-Jacquet E, Troadec MB, Mosser A, Island ML, Detivaud L, Loreal O, Jouanolle AM (2010) Molecular diagnosis of genetic iron-overload disorders. Expert Rev Mol Diagn 10(6):755–763PubMedCrossRefGoogle Scholar
  14. Bruyneel B, Vandewoestyne M, Verstraete W (1989) Lactic-acid bacteria: microorganisms able to grow in the absence of available iron and copper. Biotechnol Lett 11:401–406CrossRefGoogle Scholar
  15. Buhnik-Rosenblau K, Danin-Poleg Y, Kashi Y (2011) Predominant effect of host genetics on levels of Lactobacillus johnsonii bacteria in the mouse gut. Appl Environ Microbiol 77(18):6531–6538PubMedCrossRefGoogle Scholar
  16. Camaschella C, Poggiali E (2011) Inherited disorders of iron metabolism. Curr Opin Pediatr 23(1):14–20PubMedCrossRefGoogle Scholar
  17. Coale KH, Johnson KS, Chavez FP, Buesseler KO, Barber RT, Brzezinski MA, Cochlan WP, Millero FJ, Falkowski PG, Bauer JE, Wanninkhof RH, Kudela RM, Altabet MA, Hales BE, Takahashi T, Landry MR, Bidigare RR, Wang X, Chase Z, Strutton PG, Friederich GE, Gorbunov MY, Lance VP, Hilting AK, Hiscock MR, Demarest M, Hiscock WT, Sullivan KF, Tanner SJ, Gordon RM, Hunter CN, Elrod VA, Fitzwater SE, Jones JL, Tozzi S, Koblizek M, Roberts AE, Herndon J, Brewster J, Ladizinsky N, Smith G, Cooper D, Timothy D, Brown SL, Selph KE, Sheridan CC, Twining BS, Johnson ZI (2004) Southern Ocean iron enrichment experiment: carbon cycling in high- and low-Si waters. Science 304(5669):408–414Google Scholar
  18. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326(5960):1694–1697PubMedCrossRefGoogle Scholar
  19. Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449(7164):811–818PubMedCrossRefGoogle Scholar
  20. Dostal A, Chassard C, Hilty FM, Zimmermann MB, Jaeggi T, Rossi S, Lacroix C (2012) Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats. J Nutr 142(2):271–277PubMedCrossRefGoogle Scholar
  21. Drake SF, Morgan EH, Herbison CE, Delima R, Graham RM, Chua AC, Leedman PJ, Fleming RE, Bacon BR, Olynyk JK, Trinder D (2007) Iron absorption and hepatic iron uptake are increased in a transferrin receptor 2 (Y245X) mutant mouse model of hemochromatosis type 3. Am J Physiol Gastrointest Liver Physiol 292(1):G323–G328PubMedCrossRefGoogle Scholar
  22. Dupic F, Fruchon S, Bensaid M, Borot N, Radosavljevic M, Loreal O, Brissot P, Gilfillan S, Bahram S, Coppin H, Roth MP (2002) Inactivation of the hemochromatosis gene differentially regulates duodenal expression of iron-related mRNAs between mouse strains. Gastroenterology 122(3):745–751PubMedCrossRefGoogle Scholar
  23. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638PubMedCrossRefGoogle Scholar
  24. Esworthy RS, Smith DD, Chu FF (2010) A strong impact of genetic background on gut microflora in mice. Int J Inflamm 2010:986046Google Scholar
  25. Frank DN, Pace NR (2008) Gastrointestinal microbiology enters the metagenomics era. Curr Opin Gastroenterol 24(1):4–10PubMedCrossRefGoogle Scholar
  26. Gan EK, Powell LW, Olynyk JK (2011) Natural history and management of HFE-hemochromatosis. Semin Liver Dis 31(3):293–301PubMedCrossRefGoogle Scholar
  27. Garrett WS, Gordon JI, Glimcher LH (2010) Homeostasis and inflammation in the intestine. Cell 140(6):859–870PubMedCrossRefGoogle Scholar
  28. Griffiths WJ, Sly WS, Cox TM (2001) Intestinal iron uptake determined by divalent metal transporter is enhanced in HFE-deficient mice with hemochromatosis. Gastroenterology 120(6):1420–1429PubMedCrossRefGoogle Scholar
  29. Haller D, Antoine JM, Bengmark S, Enck P, Rijkers GT, Lenoir-Wijnkoop I (2010) Guidance for substantiating the evidence for beneficial effects of probiotics: probiotics in chronic inflammatory bowel disease and the functional disorder irritable bowel syndrome. J Nutr 140(3):690S–697SPubMedCrossRefGoogle Scholar
  30. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  31. Herrmann T, Muckenthaler M, van der Hoeven F, Brennan K, Gehrke SG, Hubert N, Sergi C, Grone HJ, Kaiser I, Gosch I, Volkmann M, Riedel HD, Hentze MW, Stewart AF, Stremmel W (2004) Iron overload in adult Hfe-deficient mice independent of changes in the steady-state expression of the duodenal iron transporters DMT1 and Ireg1/ferroportin. J Mol Med 82(1):39–48PubMedCrossRefGoogle Scholar
  32. Holubar SD, Cima RR, Sandborn WJ, Pardi DS (2010) Treatment and prevention of pouchitis after ileal pouch-anal anastomosis for chronic ulcerative colitis. Cochrane Database Syst Rev 6:CD001176Google Scholar
  33. Imbert M, Blondeau R (1998) On the iron requirement of lactobacilli grown in chemically defined medium. Curr Microbiol 37(1):64–66PubMedCrossRefGoogle Scholar
  34. Jakobsson HE, Jernberg C, Andersson AF, Sjolund-Karlsson M, Jansson JK, Engstrand L (2010) Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 5(3):e9836PubMedCrossRefGoogle Scholar
  35. Kalliomaki M, Antoine JM, Herz U, Rijkers GT, Wells JM, Mercenier A (2010) Guidance for substantiating the evidence for beneficial effects of probiotics: prevention and management of allergic diseases by probiotics. J Nutr 140(3):713S–721SPubMedCrossRefGoogle Scholar
  36. Kaser A, Niederreiter L, Blumberg RS (2011) Genetically determined epithelial dysfunction and its consequences for microflora-host interactions. Cell Mol Life Sci 68(22):3643–3649PubMedCrossRefGoogle Scholar
  37. Khachatryan ZA, Ktsoyan ZA, Manukyan GP, Kelly D, Ghazaryan KA, Aminov RI (2008) Predominant role of host genetics in controlling the composition of gut microbiota. PLoS One 3(8):e3064PubMedCrossRefGoogle Scholar
  38. Klein JS, Lewinson O (2011) Bacterial ATP-driven transporters of transition metals: physiological roles, mechanisms of action, and roles in bacterial virulence. Metallomics 3(11):1098–1108PubMedCrossRefGoogle Scholar
  39. Kortman GA, Boleij A, Swinkels DW, Tjalsma H (2012) Iron availability increases the pathogenic potential of salmonella typhimurium and other enteric pathogens at the intestinal epithelial interface. PLoS One 7(1):e29968PubMedCrossRefGoogle Scholar
  40. LaVaute T, Smith S, Cooperman S, Iwai K, Land W, Meyron-Holtz E, Drake SK, Miller G, Abu-Asab M, Tsokos M, Switzer R 3rd, Grinberg A, Love P, Tresser N, Rouault TA (2001) Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet 27(2):209–214PubMedCrossRefGoogle Scholar
  41. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320(5883):1647–1651PubMedCrossRefGoogle Scholar
  42. Lionetti E, Indrio F, Pavone L, Borrelli G, Cavallo L, Francavilla R (2010) Role of probiotics in pediatric patients with Helicobacter pylori infection: a comprehensive review of the literature. Helicobacter 15(2):79–87PubMedCrossRefGoogle Scholar
  43. Mai V, Draganov PV (2009) Recent advances and remaining gaps in our knowledge of associations between gut microbiota and human health. World J Gastroenterol 15(1):81–85PubMedCrossRefGoogle Scholar
  44. Mshvildadze M, Neu J, Mai V (2008) Intestinal microbiota development in the premature neonate: establishment of a lasting commensal relationship? Nutr Rev 66(11):658–663PubMedCrossRefGoogle Scholar
  45. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306(5704):2090–2093PubMedCrossRefGoogle Scholar
  46. Pandey A, Bringel F, Meyer J (1994) Iron requirement and search for siderophores in lactic-acid bacteria. Appl Microbiol Biotechnol 40:735–739CrossRefGoogle Scholar
  47. Pineiro M, Stanton C (2007) Probiotic bacteria: legislative framework—requirements to evidence basis. J Nutr 137(3 Suppl 2):850S–853SPubMedGoogle Scholar
  48. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65PubMedCrossRefGoogle Scholar
  49. Rosenberg E, Zilber-Rosenberg I (2011) Symbiosis and development: the hologenome concept. Birth Defects Res C Embryo Today 93(1):56–66PubMedCrossRefGoogle Scholar
  50. Rouault TA (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2(8):406–414PubMedCrossRefGoogle Scholar
  51. Sakamoto M, Hayashi H, Benno Y (2003) Terminal restriction fragment length polymorphism analysis for human fecal microbiota and its application for analysis of complex bifidobacterial communities. Microbiol Immunol 47(2):133–142PubMedGoogle Scholar
  52. Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9(4):279–290PubMedCrossRefGoogle Scholar
  53. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1(6):6ra14Google Scholar
  54. Turnbaugh PJ, Quince C, Faith JJ, McHardy AC, Yatsunenko T, Niazi F, Affourtit J, Egholm M, Henrissat B, Knight R, Gordon JI (2010) Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Natl Acad Sci USA 107(16):7503–7508PubMedCrossRefGoogle Scholar
  55. Viatte L, Lesbordes-Brion JC, Lou DQ, Bennoun M, Nicolas G, Kahn A, Canonne-Hergaux F, Vaulont S (2005) Deregulation of proteins involved in iron metabolism in hepcidin-deficient mice. Blood 105(12):4861–4864PubMedCrossRefGoogle Scholar
  56. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, Sitaraman SV, Knight R, Ley RE, Gewirtz AT (2010) Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328(5975):228–231PubMedCrossRefGoogle Scholar
  57. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, Hu C, Wong FS, Szot GL, Bluestone JA, Gordon JI, Chervonsky AV (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455(7216):1109–1113PubMedCrossRefGoogle Scholar
  58. Wolvers D, Antoine JM, Myllyluoma E, Schrezenmeir J, Szajewska H, Rijkers GT (2010) Guidance for substantiating the evidence for beneficial effects of probiotics: prevention and management of infections by probiotics. J Nutr 140(3):698S–712SPubMedCrossRefGoogle Scholar
  59. Wyckoff EE, Mey AR, Payne SM (2007) Iron acquisition in Vibrio cholerae. Biometals 20(3–4):405–416PubMedCrossRefGoogle Scholar
  60. Zoetendal EG, Akkermans AD, De Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64(10):3854–3859PubMedGoogle Scholar
  61. Zoetendal EG, Akkermans ADL, Akkermans-van Vliet WM, de Visser JAGM, de Vos WM (2001a) The host genotype affects the bacterial community in the human gastrointestinal tract. Microb Ecol Health Dis 13:129–134CrossRefGoogle Scholar
  62. Zoetendal EG, Ben-Amor K, Akkermans AD, Abee T, de Vos WM (2001b) DNA isolation protocols affect the detection limit of PCR approaches of bacteria in samples from the human gastrointestinal tract. Syst Appl Microbiol 24(3):405–410PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Keren Buhnik-Rosenblau
    • 1
  • Shirly Moshe-Belizowski
    • 1
  • Yael Danin-Poleg
    • 1
  • Esther G. Meyron-Holtz
    • 1
  1. 1.Department of Biotechnolgy and Food EngineeringTechnion–Israel Institute of TechnologyTechnion, HaifaIsrael

Personalised recommendations