, Volume 25, Issue 4, pp 665–675 | Cite as

Mechanistic analysis of iron accumulation by endothelial cells of the BBB

  • Ryan C. McCarthy
  • Daniel J. Kosman


The mechanism(s) by which iron in blood is transported across the blood–brain barrier (BBB) remains controversial. Here we have examined the first step of this trans-cellular pathway, namely the mechanism(s) of iron uptake into human brain microvascular endothelial cells (hBMVEC). We show that hBMVEC actively reduce non-transferrin bound FeIII (NTBI) and transferrin-bound FeIII (TBI); this activity is associated with one or more ferrireductases. Efficient, exo-cytoplasmic ferri-reduction from TBI is dependent upon transferrin receptor (TfR), also. Blocking holo-Tf binding with an anti-TfR antibody significantly decreases the reduction of iron from transferrin by hBMVEC, suggesting that holo-Tf needs to bind to TfR in order for efficient reduction to occur. Ferri-reduction from TBI significantly decreases when hBMVEC are pre-treated with PtII, an inhibitor of cell surface reductase activity. Uptake of 59Fe from 59Fe-Tf by endothelial cells is inhibited by 50 % when ferrozine is added to solution; in contrast, no inhibition occurs when cells are alkalinized with NH4Cl. This indicates that the iron reduced from holo-transferrin at the plasma membrane accounts for at least 50 % of the iron uptake observed. hBMVEC-dependent reduction and uptake of NTBI utilizes a PtII-insensitive reductase. Reductase-independent uptake of FeII by hBMVEC is inhibited up to 50 % by ZnII and/or MnII by a saturable process suggesting that redundant FeII transporters exist in the hBMVEC plasma membrane. These results are the first to demonstrate multiple mechanism(s) of TBI and NTBI reduction and uptake by endothelial cells (EC) of the BBB.


Blood–brain barrier Iron Neurodegeneration Transferrin Dcytb STEAP2 



Ascorbic acid


Blood–brain barrier


Brain microvascular endothelial cells


Central nervous system


Duodenal cytochrome b


Divalent metal transporter 1


Endothelial cells

Electrochemical potential


Human brain microvascular endothelial cells


Microvascular endothelial cells


Non-transferrin bound iron


Six-transmembrane epithelial antigen of the prostate 2


Transferrin-bound iron




Transferrin receptor



We thank Dr. Supriya Mahajan for her generous gift of hBMVEC. This work was supported by a grant from the National Institute of Health and a fellowship from the American Heart Association.

Supplementary material

10534_2012_9538_MOESM1_ESM.docx (752 kb)
Supplementary material 1 (DOCX 752 kb)


  1. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte–endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7(1):41–53PubMedCrossRefGoogle Scholar
  2. Armarego WLF, Ohnishi A (1987) Inactivation of dihydropteridine reductase (human brain) by platinum (II) complexes. Eur J Biochem 164(2):403–409. doi: 10.1111/j.1432-1033.1987.tb11072.x PubMedCrossRefGoogle Scholar
  3. Atanasova B, Mudway IS, Laftah AH, Latunde-Dada GO, Mckie AT, Peters TJ, Tzatchev KN, Simpson RJ (2004) Duodenal ascorbate levels are changed in mice with altered iron metabolism. J Nutr 134(3):501–505PubMedGoogle Scholar
  4. Bates GW, Billups C, Saltman P (1967) The kinetics and mechanism of iron(III) exchange between chelates and transferrin. J Biol Chem 242(12):2810–2815PubMedGoogle Scholar
  5. Bishop G, Scheiber I, Dringen R, Robinson S (2010) Synergistic accumulation of iron and zinc by cultured astrocytes. Journal of Neural Transmission 117(7):809–817. doi: 10.1007/s00702-010-0420-9 PubMedCrossRefGoogle Scholar
  6. Bradbury MWB (1997) Transport of Iron in the Blood-Brain-Cerebrospinal Fluid System. J Neurochem 69(2):443–454. doi: 10.1046/j.1471-4159.1997.69020443.x PubMedCrossRefGoogle Scholar
  7. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. doi: 10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  8. Burdo J, Menzies S, Simpson I, Garrick L, Garrick M, Dolan K, Haile D, Beard J, Connor J (2001) Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. J Neurosci Res 66(6):1198–1207. doi: 10.1002/jnr.1256 PubMedCrossRefGoogle Scholar
  9. Burdo JR, Antonetti DA, Wolpert EB, Connor JR (2003) Mechanisms and regulation of transferrin and iron transport in a model blood-brain barrier system. Neuroscience 121(4):883–890. doi: 10.1016/s0306-4522(03)00590-6 PubMedCrossRefGoogle Scholar
  10. Byrne SL, Chasteen ND, Steere AN, Mason AB (2010) The unique kinetics of iron release from transferrin: the role of receptor, lobe–lobe interactions, and salt at endosomal pH. J Mol Biol 396(1):130–140. doi: 10.1016/j.jmb.2009.11.023 PubMedCrossRefGoogle Scholar
  11. Dhungana S, Taboy CH, Zak O, Larvie M, Crumbliss AL, Aisen P (2004) Redox properties of human transferrin bound to its receptor†. Biochemistry 43(1):205–209. doi: 10.1021/bi0353631 PubMedCrossRefGoogle Scholar
  12. Eide D, Davis-Kaplan S, Jordan I, Sipe D, Kaplan J (1992) Regulation of iron uptake in Saccharomyces cerevisiae. The ferrireductase and Fe(II) transporter are regulated independently. J Biol Chem 267(29):20774–20781PubMedGoogle Scholar
  13. Gaasch J, Lockman P, Geldenhuys W, Allen D, Van der Schyf C (2007) Brain iron toxicity: differential responses of astrocytes, neurons, and endothelial cells. Neurochem Res 32(7):1196–1208. doi: 10.1007/s11064-007-9290-4 PubMedCrossRefGoogle Scholar
  14. Garrick M (2011) Human iron transporters. Genes Nutr 6(1):45–54. doi: 10.1007/s12263-010-0184-8 PubMedCrossRefGoogle Scholar
  15. Garrick MDKH, Vargas F, Singleton S, Zhao L, Smith JJ, Paradkar P, Roth JA, Garrick LM (2006a) Comparison of mammalian cell lines expressing distinct isoforms of divalent metal transporter 1 in a tetracycline-regulated fashion. Biochem J 398(3):539–545PubMedCrossRefGoogle Scholar
  16. Garrick MD, Singleton ST, Vargas F, Kuo H-C, Zhao L, Knopfel M, Davidson T, Costa M, Paradkar P, Roth JA, Garrick LM (2006b) DMT1: Which metals does it transport? Biol Res 39:79–85PubMedCrossRefGoogle Scholar
  17. Girijashanker K, He L, Soleimani M, Reed JM, Li H, Liu Z, Wang B, Dalton TP, Nebert DW (2008) Slc39a14 Gene Encodes ZIP14, A Metal/Bicarbonate Symporter: Similarities to the ZIP8 Transporter. Mol Pharmacol 73(5):1413–1423. doi: 10.1124/mol.107.043588 PubMedCrossRefGoogle Scholar
  18. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388(6641):482–488PubMedCrossRefGoogle Scholar
  19. Königsberger LC, Königsberger E, May PM, Hefter GT (2000) Complexation of iron(III) and iron(II) by citrate. Implications for iron speciation in blood plasma. J Inorg Biochem 78(3):175–184. doi: 10.1016/s0162-0134(99)00222-6 PubMedCrossRefGoogle Scholar
  20. Kraiter DC, Zak O, Aisen P, Crumbliss AL (1998) A determination of the reduction potentials for diferric and C- and N-lobe monoferric transferrins at endosomal pH (5.8). Inorg Chem 37(5):964–968. doi: 10.1021/ic970644g CrossRefGoogle Scholar
  21. Madsen E, Gitlin JD (2007) Copper and Iron Disorders of the Brain. Annu Rev Neurosci 30(1):317–337. doi: 10.1146/annurev.neuro.30.051606.094232 PubMedCrossRefGoogle Scholar
  22. Moos T, Nielsen TR, Skjørringe T, Morgan EH (2007) Iron trafficking inside the brain. J Neurochem 103(5):1730–1740PubMedCrossRefGoogle Scholar
  23. Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, Sharp JJ, Fujiwara Y, Barker JE, Fleming MD (2005) Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet 37(11):1264–1269. doi: 10.1038/ng1658 PubMedCrossRefGoogle Scholar
  24. Ohgami RS, Campagna DR, McDonald A, Fleming MD (2006) The Steap proteins are metalloreductases. Blood 108(4):1388–1394. doi: 10.1182/blood-2006-02-003681 PubMedCrossRefGoogle Scholar
  25. Rivera-Mancía S, Pérez-Neri I, Ríos C, Tristán-López L, Rivera-Espinosa L, Montes S (2010) The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact 186(2):184–199PubMedCrossRefGoogle Scholar
  26. Roth JA, Feng L, Dolan KG, Lis A, Garrick MD (2002) Effect of the iron chelator desferrioxamine on manganese-induced toxicity of rat pheochromocytoma (PC12) cells. J Neurosci Res 68(1):76–83. doi: 10.1002/jnr.10207 PubMedCrossRefGoogle Scholar
  27. Rouault TA, Cooperman S (2006) Brain iron metabolism. Semin Pediatr Neurol. 13(3):142–148PubMedCrossRefGoogle Scholar
  28. Salvador GA (2010) Iron in neuronal function and dysfunction. BioFactors 36(2):103–110PubMedCrossRefGoogle Scholar
  29. Siddappa AJM, Rao RB, Wobken JD, Leibold EA, Connor JR, Georgieff MK (2002) Developmental changes in the expression of iron regulatory proteins and iron transport proteins in the perinatal rat brain. J Neurosci Res 68(6):761–775. doi: 10.1002/jnr.10246 PubMedCrossRefGoogle Scholar
  30. Steere AN, Byrne SL, Chasteen ND, Mason AB Kinetics of iron release from transferrin bound to the transferrin receptor at endosomal pH. Biochimica et Biophysica Acta (BBA)––General Subjects (0). doi: 10.1016/j.bbagen.2011.06.003
  31. Steere A, Byrne S, Chasteen N, Smith V, MacGillivray R, Mason A (2010) Evidence that His349 acts as a pH-inducible switch to accelerate receptor-mediated iron release from the C-lobe of human transferrin. J Biol Inorg Chem 15(8):1341–1352. doi: 10.1007/s00775-010-0694-2 PubMedCrossRefGoogle Scholar
  32. Tulpule K, Robinson SR, Bishop GM, Dringen R (2010) Uptake of ferrous iron by cultured rat astrocytes. J Neurosci Res 88(3):563–571PubMedGoogle Scholar
  33. Vincent JB, Love S (2011) The binding and transport of alternative metals by transferrin. Biochim Biophys Acta (BBA)––General Subjects (0). doi: 10.1016/j.bbagen.2011.07.003
  34. Weaver KD, Gabričević M, Anderson DS, Adhikari P, Mietzner TA, Crumbliss AL (2010) Role of citrate and phosphate anions in the mechanism of iron(III) sequestration by ferric binding protein: kinetic studies of the formation of the holoprotein of wild-type fbpa and its engineered mutants. Biochemistry 49(29):6021–6032. doi: 10.1021/bi902231c PubMedCrossRefGoogle Scholar
  35. Wolcott GH, Boyer PD (1948) A colorimetric method for the determination of citric acid in blood and plasma. J Biol Chem 172(2):729–736PubMedGoogle Scholar
  36. Yang W, Jung K, Lee M, Lee Y, Nakagawa S, Niwa M, Cho S, Kim D (2010) Transient expression of iron transport proteins in the capillary of the developing rat brain. Cellular and Molecular Neurobiology:1–7. doi: 10.1007/s10571-010-9558-0

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  1. 1.Department of BiochemistrySUNY University at Buffalo, School of Medicine and Biomedical SciencesBuffaloUSA

Personalised recommendations