Skip to main content
Log in

Proteomic study of the yeast Rhodotorula mucilaginosa RCL-11 under copper stress

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

In order to understand the mechanism involved in Rhodotorula mucilaginosa RCL-11 resistance to copper a proteomic study was conducted. Atomic absorption spectroscopy showed that the copper concentration in the medium decreased from 0.5 to 0.19 mM 48 h after inoculation of the yeast. Analysis of one-dimensional gel electrophoresis of crude cell extracts revealed expression of differential bands between cells with and without copper. In order to study this difference, two-dimensional electrophoresis of R. mucilaginosa RCL-11 exposed to Cu for 16, 24, and 48 h was carried out. Identification of differentially expressed proteins was performed by MALDI-TOF/TOF. Ten of the 16 spots identified belonged to heat shock proteins. Superoxide dismutase, methionine synthase and beta-glucosidase were also found over-expressed at high copper concentrations. The results obtained in the present work show that when R. mucilaginosa RCL-11 is exposed to 0.5 mM copper, differential proteins, involved in cell resistance mechanisms, are expressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Burt ET, Daly R, Hoganson D, Tsirulnikov Y, Essmann M, Larsen B (2003) Isolation and partial characterization of Hsp90 from Candida albicans. Ann Clin Lab Sci 33:86–93

    PubMed  CAS  Google Scholar 

  • Cabiscol E, Belli G, Tamarit J, Echave P, Herrero E, Ros J (2002) Mitochondrial Hsp60, resistance to oxidative stress, and the labile iron pool are closely connected in Saccharomyces cerevisiae. J Biol Chem 277:44531–44538

    Article  PubMed  CAS  Google Scholar 

  • Fechner LC, Gourlay-France C, Uher E, Tusseau-Vuillemin MH (2010) Adapting an enzymatic toxicity test to allow comparative evaluation of natural freshwater biofilms’ tolerance to metals. Ecotoxicology 19:1302–1311

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1999) Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann N Y Acad Sci 893:13–18

    Article  PubMed  CAS  Google Scholar 

  • Godon C, Lagniel G, Lee J, Buhler JM, Kieffer S, Perrot M, Boucherie H, Toledano MB, Labarre J (1998) The H2O2 stimulon in Saccharomyces cerevisiae. J Biol Chem 273:22480–22489

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez JC, Peariso K, Penner-Hahn JE, Matthews RG (1996) Cobalamin-independent methionine synthase from Escherichia coli: a zinc metalloenzyme. Biochemistry 35:12228–12234

    Article  PubMed  CAS  Google Scholar 

  • Hondorp ER, Matthews RG (2009) Oxidation of cysteine 645 of cobalamin-independent methionine synthase causes a methionine limitation in Escherichia coli. J Bacteriol 191:3407–3410

    Article  PubMed  CAS  Google Scholar 

  • Irazusta V, Cabiscol E, Reverter-Branchat G, Ros J, Tamarit J (2006) Manganese is the link between frataxin and iron-sulfur deficiency in the yeast model of Friedreich ataxia. J Biol Chem 281:12227–12232

    Article  PubMed  CAS  Google Scholar 

  • Irazusta V, Obis E, Moreno-Cermeno A, Cabiscol E, Ros J, Tamarit J (2010) Yeast frataxin mutants display decreased superoxide dismutase activity crucial to promote protein oxidative damage. Free Radic Biol Med 48:411–420

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Inouhe M, Tohoyama H, Joho M (2007) Characteristics of copper tolerance in Yarrowia lipolytica. Biometals 20:773–780

    Article  PubMed  CAS  Google Scholar 

  • Jamieson DJ (1998) Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14:1511–1527

    Article  PubMed  CAS  Google Scholar 

  • Jarosz DF, Lindquist S (2010) Hsp90 and environmental stress transform the adaptive value of natural genetic variation. Science 330:1820–1824

    Article  PubMed  CAS  Google Scholar 

  • Jeng WY, Wang NC, Lin MH, Lin CT, Liaw YC, Chang WJ, Liu CI, Liang PH, Wang AH (2011) Structural and functional analysis of three beta-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis. J Struct Biol 173:46–56

    Article  PubMed  CAS  Google Scholar 

  • Ketudat Cairns JR, Esen A (2010) Beta-glucosidases. Cell Mol Life Sci 67:3389–3405

    Article  PubMed  CAS  Google Scholar 

  • Koutmos M, Datta S, Pattridge KA, Smith JL, Matthews RG (2009) Insights into the reactivation of cobalamin-dependent methionine synthase. Proc Natl Acad Sci 106:18527–18532

    Article  PubMed  CAS  Google Scholar 

  • Machado MD, Janssens S, Soares HM, Soares EV (2009) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: advantages of using dead biomass. J Appl Microbiol 106:1792–1804

    Article  PubMed  CAS  Google Scholar 

  • Malhotra R, Singh B (2006) Ethanol-induced changes in glycolipids of Saccharomyces cerevisiae. Appl Biochem Biotechnol 128:205–213

    Article  PubMed  CAS  Google Scholar 

  • Mapa K, Sikor M, Kudryavtsev V, Waegemann K, Kalinin S, Seidel CA, Neupert W, Lamb DC, Mokranjac D (2010) The conformational dynamics of the mitochondrial Hsp70 chaperone. Mol Cell 38:89–100

    Article  PubMed  CAS  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  PubMed  CAS  Google Scholar 

  • Park HG, Han SI, Oh SY, Kang HS (2005) Cellular responses to mild heat stress. Cell Mol Life Sci 62:10–23

    Article  PubMed  CAS  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  PubMed  CAS  Google Scholar 

  • Plesofsky-Vig N, Brambl R (1998) Characterization of an 88-kDa heat shock protein of Neurospora crassa that interacts with Hsp30. J Biol Chem 273:11335–11341

    Article  PubMed  CAS  Google Scholar 

  • Puig S, Thiele DJ (2002) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6:171–180

    Article  PubMed  CAS  Google Scholar 

  • Raggam RB, Salzer HJ, Marth E, Heiling B, Paulitsch AH, Buzina W (2010) Molecular detection and characterisation of fungal heat shock protein 60. Mycoses. doi:10.1111/j.1439-0507.2010.01933.x

    PubMed  Google Scholar 

  • Rensing C, Fan B, Sharma R, Mitra B, Rosen BP (2000) CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci U S A 97:652–656

    Article  PubMed  CAS  Google Scholar 

  • Solioz M, Stoyanov JV (2003) Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev 27:183–195

    Article  PubMed  CAS  Google Scholar 

  • Strain J, Lorenz CR, Bode J, Garland S, Smolen GA, Vickery LE, Culotta VC (1998) Suppressors of superoxide dismutase (SOD1) deficiency in Saccharomyces cerevisiae. Identification of proteins predicted to mediate iron-sulfur cluster assembly. J Biol Chem 273:31138–31144

    Article  PubMed  CAS  Google Scholar 

  • Suliman HS, Sawyer GM, Appling DR, Robertus JD (2005) Purification and properties of cobalamin-independent methionine synthase from Candida albicans and Saccharomyces cerevisiae. Arch Biochem Biophys 441:56–63

    Article  PubMed  CAS  Google Scholar 

  • Tamarit J, Cabiscol E, Aguilar J, Ros J (1997) Differential inactivation of alcohol dehydrogenase isoenzymes in Zymomonas mobilis by oxygen. J Bacteriol 179:1102–1104

    PubMed  CAS  Google Scholar 

  • Tamarit J, Irazusta V, Moreno-Cermeno A, Ros J (2006) Colorimetric assay for the quantitation of iron in yeast. Anal Biochem 351:149–151

    Article  PubMed  CAS  Google Scholar 

  • Villegas LB, Amoroso MJ, de Figueroa LI (2005) Copper tolerant yeasts isolated from polluted area of Argentina. J Basic Microbiol 45:381–391

    Article  PubMed  CAS  Google Scholar 

  • Villegas LB, Fernández PM, Amoroso MJ, de Figueroa LI (2008) Chromate removal by yeast isolated from sediments of a tanning factory and a mine site in Argentina. Biometals 21:591–600

    Article  PubMed  CAS  Google Scholar 

  • Villegas LB, Amoroso MJ, de Figueroa LI (2009) Responses of Candida fukuyamaensis RCL-3 and Rhodotorula mucilaginosa RCL-11 to copper stress. J Basic Microbiol 49:395–403

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    Article  PubMed  CAS  Google Scholar 

  • Yoneda T, Benedetti C, Urano F, Clark SG, Harding HP, Ron D (2004) Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci 117:4055–4066

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Hacham M, Panepinto J, Hu G, Shin S, Zhu X, Williamson PR (2006) The Hsp70 member, Ssa1, acts as a DNA-binding transcriptional co-activator of laccase in Cryptococcus neoformans. Mol Microbiol 62:1090–1101

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Agencia Nacional de Promoción Científica Tecnológica, FONCYT (PICT2010-0101, PICT2007-568) and Consejo de Investigaciones de la Universidad de Tucumán, CIUNT (D-415) and PIP096. We also are indebted to Dr. Jordi Tamarit (University of Lleida) for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica Irazusta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irazusta, V., Estévez, C., Amoroso, M.J. et al. Proteomic study of the yeast Rhodotorula mucilaginosa RCL-11 under copper stress. Biometals 25, 517–527 (2012). https://doi.org/10.1007/s10534-012-9531-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-012-9531-0

Keywords

Navigation