, Volume 25, Issue 4, pp 761–776 | Cite as

Iron toxicity in neurodegeneration

  • Marco T. Núñez
  • Pamela Urrutia
  • Natalia Mena
  • Pabla Aguirre
  • Victoria Tapia
  • Julio Salazar


Iron is an essential element for life on earth, participating in a plethora of cellular processes where one-electron transfer reactions are required. Its essentiality, coupled to its scarcity in aqueous oxidative environments, has compelled living organisms to develop mechanisms that ensure an adequate iron supply, at times with disregard to long-term deleterious effects derived from iron accumulation. However, iron is an intrinsic producer of reactive oxygen species, and increased levels of iron promote neurotoxicity because of hydroxyl radical formation, which results in glutathione consumption, protein aggregation, lipid peroxidation and nucleic acid modification. Neurons from brain areas sensitive to degeneration accumulate iron with age and thus are subjected to an ever increasing oxidative stress with the accompanying cellular damage. The ability of these neurons to survive depends on the adaptive mechanisms developed to cope with the increasing oxidative load. Here, we describe the chemical and thermodynamic peculiarities of iron chemistry in living matter, review the components of iron homeostasis in neurons and elaborate on the mechanisms by which iron homeostasis is lost in Parkinson’s disease, Alzheimer’s disease and other diseases in which iron accumulation has been demonstrated.


Iron homeostasis Mitochondria dysfunction GSH Fe–S clusters Neurodegeneration 



This work was financed by grant 1100599 from Fondo Nacional de Ciencia y Tecnología Chile, (FONDECYT) and by project ICM-P05-001-F from the Millennium Scientific Initiative, Ministerio de Economía, Chile.


  1. Aguirre P, Mena N, Tapia V, Arredondo M, Núñez MT (2005) Iron homeostasis in neuronal cells: a role for IREG1. BMC Neurosci 6:3PubMedCrossRefGoogle Scholar
  2. Barnham KJ, Bush AI (2008) Metals in Alzheimer’s and Parkinson’s diseases. Curr Opin Chem Biol 12(2):222–228PubMedCrossRefGoogle Scholar
  3. Bartzokis G, Beckson M, Hance DB, Marx P, Foster JA, Marder SR (1997) MR evaluation of age-related increase of brain iron in young adult and older normal males. Magn Reson Imaging 15(1):29–35PubMedCrossRefGoogle Scholar
  4. Bartzokis G, Sultzer D, Cummings J, Holt LE, Hance DB, Henderson VW, Mintz J (2000) In vivo evaluation of brain iron in Alzheimer disease using magnetic resonance imaging. Arch Gen Psychiatry 57(1):47–53PubMedCrossRefGoogle Scholar
  5. Beinert H, Emptage MH, Dreyer JL, Scott RA, Hahn JE, Hodgson KO, Thomson AJ (1983) Iron-sulfur stoichiometry and structure of iron-sulfur clusters in three-iron proteins: evidence for [3Fe–4S] clusters. Proc Natl Acad Sci USA 80(2):393–396PubMedCrossRefGoogle Scholar
  6. Berg D, Youdim MB (2006) Role of iron in neurodegenerative disorders. Top Magn Reson Imaging 17(1):5–17PubMedCrossRefGoogle Scholar
  7. Boserup MW, Lichota J, Haile D, Moos T (2011) Heterogenous distribution of ferroportin-containing neurons in mouse brain. Biometals 24(2):357–375PubMedCrossRefGoogle Scholar
  8. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259PubMedCrossRefGoogle Scholar
  9. Bradbury MWB (1997) Transport of Iron in the blood-brain-Ccrebrospinal fluid system. J Neurochem 69(2):443–454PubMedCrossRefGoogle Scholar
  10. Brennan WA Jr, Bird ED, Aprille JR (1985) Regional mitochondrial respiratory activity in Huntington’s disease brain. J Neurochem 44(6):1948–1950PubMedCrossRefGoogle Scholar
  11. Burdo JR, Menzies SL, Simpson IA, Garrick LM, Garrick MD, Dolan KG, Haile DJ, Beard JL, Connor JR (2001) Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. J Neurosci Res 66(6):1198–1207PubMedCrossRefGoogle Scholar
  12. Cairo G, Recalcati S (2007) Iron-regulatory proteins: molecular biology and pathophysiological implications. Expert Rev Mol Med 9(33):1–13PubMedCrossRefGoogle Scholar
  13. Castellani RJ, Moreira PI, Liu G, Dobson J, Perry G, Smith MA, Zhu X (2007) Iron: the Redox-active center of oxidative stress in Alzheimer disease. Neurochem Res 32(10):1640–1645PubMedCrossRefGoogle Scholar
  14. Chinopoulos C, Adam-Vizi V (2001) Mitochondria deficient in complex I activity are depolarized by hydrogen peroxide in nerve terminals: relevance to Parkinson’s disease. J Neurochem 76(1):302–306PubMedCrossRefGoogle Scholar
  15. Chinta SJ, Andersen JK (2006) Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro: implications for Parkinson’s disease. Free Radic Biol Med 41(9):1442–1448PubMedCrossRefGoogle Scholar
  16. Collingwood JF, Mikhaylova A, Davidson M, Batich C, Streit WJ, Terry J, Dobson J (2005) In situ characterization and mapping of iron compounds in Alzheimer’s disease tissue. J Alzheimers Dis 7(4):267–272PubMedGoogle Scholar
  17. Collingwood JF, Chong RK, Kasama T, Cervera-Gontard L, Dunin-Borkowski RE, Perry G, Posfai M, Siedlak SL, Simpson ET, Smith MA, Dobson J (2008) Three-dimensional tomographic imaging and characterization of iron compounds within Alzheimer’s plaque core material. J Alzheimers Dis 14(2):235–245PubMedGoogle Scholar
  18. Connor JR, Benkovic SA (1992) Iron regulation in the brain: histochemical, biochemical, and molecular considerations. Ann Neurol 32(Suppl):S51–S61PubMedCrossRefGoogle Scholar
  19. Connor JR, Snyder BS, Beard JL, Fine RE, Mufson EJ (1992) Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer’s disease. J Neurosci Res 31(2):327–335PubMedCrossRefGoogle Scholar
  20. Cozzi A, Santambrogio P, Corsi B, Campanella A, Arosio P, Levi S (2006) Characterization of the l-ferritin variant 460InsA responsible of a hereditary ferritinopathy disorder. Neurobiol Dis 23(3):644–652PubMedCrossRefGoogle Scholar
  21. Curtis AR, Fey C, Morris CM, Bindoff LA, Ince PG, Chinnery PF, Coulthard A, Jackson MJ, Jackson AP, McHale DP, Hay D, Barker WA, Markham AF, Bates D, Curtis A, Burn J (2001) Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet 28(4):350–354PubMedCrossRefGoogle Scholar
  22. Davis DG, Schmitt FA, Wekstein DR, Markesbery WR (1999) Alzheimer neuropathologic alterations in aged cognitively normal subjects. J Neuropathol Exp Neurol 58(4):376–388PubMedCrossRefGoogle Scholar
  23. Davison AN (1987) Pathophysiology of ageing brain. Gerontology 33(3–4):129–135PubMedCrossRefGoogle Scholar
  24. De Domenico I, Vaughn MB, Li L, Bagley D, Musci G, Ward DM, Kaplan J (2006) Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome. EMBO J 25(22):5396–5404PubMedCrossRefGoogle Scholar
  25. Devalia V, Carter K, Walker AP, Perkins SJ, Worwood M, May A, Dooley JS (2002) Autosomal dominant reticuloendothelial iron overload associated with a 3-base pair deletion in the ferroportin 1 gene (SLC11A3). Blood 100(2):695–697PubMedCrossRefGoogle Scholar
  26. Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114(Pt 4):1953–1975PubMedCrossRefGoogle Scholar
  27. Ding B, Chen KM, Ling HW, Sun F, Li X, Wan T, Chai WM, Zhang H, Zhan Y, Guan YJ (2009) Correlation of iron in the hippocampus with MMSE in patients with Alzheimer’s disease. J Magn Reson Imaging 29(4):793–798PubMedCrossRefGoogle Scholar
  28. Double KL, Gerlach M, Schunemann V, Trautwein AX, Zecca L, Gallorini M, Youdim MB, Riederer P, Ben-Shachar D (2003) Iron-binding characteristics of neuromelanin of the human substantia nigra. Biochem Pharmacol 66(3):489–494PubMedCrossRefGoogle Scholar
  29. Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 267(16):4912–4916PubMedCrossRefGoogle Scholar
  30. Duyckaerts C (2004) Looking for the link between plaques and tangles. Neurobiol Aging 25(6):735–739 (discussion 743–736)Google Scholar
  31. Duyckaerts C, Delatour B, Potier MC (2009) Classification and basic pathology of Alzheimer disease. Acta Neuropathol 118(1):5–36PubMedCrossRefGoogle Scholar
  32. Epsztejn S, Kakhlon O, Glickstein H, Breuer W, Cabantchik I (1997) Fluorescence analysis of the labile iron pool of mammalian cells. Anal Biochem 248(1):31–40PubMedCrossRefGoogle Scholar
  33. Falangola MF, Lee SP, Nixon RA, Duff K, Helpern JA (2005) Histological co-localization of iron in Abeta plaques of PS/APP transgenic mice. Neurochem Res 30(2):201–205PubMedCrossRefGoogle Scholar
  34. Faucheux BA, Martin ME, Beaumont C, Hunot S, Hauw JJ, Agid Y, Hirsch EC (2002) Lack of up-regulation of ferritin is associated with sustained iron regulatory protein-1 binding activity in the substantia nigra of patients with Parkinson’s disease. J Neurochem 83(2):320–330PubMedCrossRefGoogle Scholar
  35. Fisher J, Devraj K, Ingram J, Slagle-Webb B, Madhankumar AB, Liu X, Klinger M, Simpson IA, Connor JR (2007) Ferritin: a novel mechanism for delivery of iron to the brain and other organs. Am J Physiol Cell Physiol 293(2):C641–C649PubMedCrossRefGoogle Scholar
  36. Gaasch JA, Geldenhuys WJ, Lockman PR, Allen DD, Van der Schyf CJ (2007) Voltage-gated calcium channels provide an alternate route for iron uptake in neuronal cell cultures. Neurochem Res 32(10):1686–1693PubMedCrossRefGoogle Scholar
  37. Garrick MD, Garrick LM (2009) Cellular iron transport. Biochim Biophys Acta 1790(5):309–325PubMedCrossRefGoogle Scholar
  38. Gerlach M, Riederer P, Double KL (2008) Neuromelanin-bound ferric iron as an experimental model of dopaminergic neurodegeneration in Parkinson’s disease. Parkinsonism Relat Disord 14(Suppl 2):S185–S188PubMedCrossRefGoogle Scholar
  39. Giampa C, DeMarch Z, Patassini S, Bernardi G, Fusco FR (2007) Immunohistochemical localization of TRPC6 in the rat substantia nigra. Neurosci Lett 424(3):170–174PubMedCrossRefGoogle Scholar
  40. Girijashanker K, He L, Soleimani M, Reed JM, Li H, Liu Z, Wang B, Dalton TP, Nebert DW (2008) Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol Pharmacol 73(5):1413–1423PubMedCrossRefGoogle Scholar
  41. Glickstein H, El RB, Link G, Breuer W, Konijn AM, Hershko C, Nick H, Cabantchik ZI (2006) Action of chelators in iron-loaded cardiac cells: accessibility to intracellular labile iron and functional consequences. Blood 108(9):3195–3203PubMedCrossRefGoogle Scholar
  42. Gómez FJ, Aguirre P, Gonzalez-Billault C, Núñez MT (2011) Iron mediates neuritic tree collapse in mesencephalic neurons treated with 1-methyl-4-phenylpyridinium (MPP+). J Neural Transm 118(3):421–431PubMedCrossRefGoogle Scholar
  43. Gorell JM, Ordidge RJ, Brown GG, Deniau JC, Buderer NM, Helpern JA (1995) Increased iron-related MRI contrast in the substantia nigra in Parkinson’s disease. Neurology 45(6):1138–1143PubMedCrossRefGoogle Scholar
  44. Graf E, Mahoney JR, Bryant RG, Eaton JW (1984) Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site. J Biol Chem 259(6):3620–3624PubMedGoogle Scholar
  45. Griffiths PD, Dobson BR, Jones GR, Clarke DT (1999) Iron in the basal ganglia in Parkinson’s disease. An in vitro study using extended X-ray absorption fine structure and cryo-electron microscopy. Brain 122(Pt 4):667–673Google Scholar
  46. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388(6641):482–488PubMedCrossRefGoogle Scholar
  47. Haeger P, Alvarez A, Leal N, Adasme T, Núñez MT, Hidalgo C (2010) Increased hippocampal expression of the divalent metal transporter 1 (DMT1) mRNA variants 1B and +IRE and DMT1 protein after NMDA-receptor stimulation or spatial memory training. Neurotoxic Res 17(3):238–247CrossRefGoogle Scholar
  48. Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275(3):161–203PubMedCrossRefGoogle Scholar
  49. Hidalgo C, Núñez MT (2007) Calcium, iron and neuronal function. IUBMB Life 59(4–5):280–285PubMedCrossRefGoogle Scholar
  50. Hirsch EC, Brandel JP, Galle P, Javoy-Agid F, Agid Y (1991) Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem 56(2):446–451PubMedCrossRefGoogle Scholar
  51. Hubert N, Hentze MW (2002) Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function. Proc Natl Acad Sci USA 99(19):12345–12350PubMedCrossRefGoogle Scholar
  52. Itagaki S, McGeer PL, Akiyama H, Zhu S, Selkoe D (1989) Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol 24(3):173–182PubMedCrossRefGoogle Scholar
  53. Jack CR Jr, Wengenack TM, Reyes DA, Garwood M, Curran GL, Borowski BJ, Lin J, Preboske GM, Holasek SS, Adriany G, Poduslo JF (2005) In vivo magnetic resonance microimaging of individual amyloid plaques in Alzheimer’s transgenic mice. J Neurosci 25(43):10041–10048PubMedCrossRefGoogle Scholar
  54. Jefferies WA, Food MR, Gabathuler R, Rothenberger S, Yamada T, Yasuhara O, McGeer PL (1996) Reactive microglia specifically associated with amyloid plaques in Alzheimer’s disease brain tissue express melanotransferrin. Brain Res 712(1):122–126PubMedCrossRefGoogle Scholar
  55. Jellinger KA (1999) The role of iron in neurodegeneration: prospects for pharmacotherapy of Parkinson’s disease. Drugs Aging 14(2):115–140PubMedCrossRefGoogle Scholar
  56. Johnstone M, Gearing AJ, Miller KM (1999) A central role for astrocytes in the inflammatory response to beta-amyloid; chemokines, cytokines and reactive oxygen species are produced. J Neuroimmunol 93(1–2):182–193PubMedCrossRefGoogle Scholar
  57. Joseph JA, Shukitt-Hale B, Casadesus G, Fisher D (2005) Oxidative stress and inflammation in brain aging: nutritional considerations. Neurochem Res 30(6–7):927–935PubMedCrossRefGoogle Scholar
  58. Kakhlon O, Cabantchik ZI (2002) The labile iron pool: characterization, measurement, and participation in cellular processes(1). Free Radic Biol Med 33(8):1037–1046PubMedCrossRefGoogle Scholar
  59. Kastner A, Hirsch EC, Lejeune O, Javoy-Agid F, Rascol O, Agid Y (1992) Is the vulnerability of neurons in the substantia nigra of patients with Parkinson’s disease related to their neuromelanin content? J Neurochem 59(3):1080–1089PubMedCrossRefGoogle Scholar
  60. Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ, Boonplueang R, Viswanath V, Jacobs R, Yang L, Beal MF, DiMonte D, Volitaskis I, Ellerby L, Cherny RA, Bush AI, Andersen JK (2003) Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 37(6):899–909PubMedCrossRefGoogle Scholar
  61. Kaur D, Lee D, Ragapolan S, Andersen JK (2009) Glutathione depletion in immortalized midbrain-derived dopaminergic neurons results in increases in the labile iron pool: implications for Parkinson’s disease. Free Radic Biol Med 46(5):593–598PubMedCrossRefGoogle Scholar
  62. Knutson MD, Vafa MR, Haile DJ, Wessling-Resnick M (2003) Iron loading and erythrophagocytosis increase ferroportin 1 (FPN1) expression in J774 macrophages. Blood 102(12):4191–4197PubMedCrossRefGoogle Scholar
  63. Krizaj D (2005) Compartmentalization of calcium entry pathways in mouse rods. Eur J Neurosci 22(12):3292–3296PubMedCrossRefGoogle Scholar
  64. Kruszewski M (2003) Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat Res 531(1–2):81–92PubMedGoogle Scholar
  65. Kupershmidt L, Weinreb O, Amit T, Mandel S, Bar-Am O, Youdim MB (2011) Novel molecular targets of the neuroprotective/neurorescue multimodal iron chelating drug M30 in the mouse brain. Neuroscience 189:345–358PubMedCrossRefGoogle Scholar
  66. LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8(7):499–509PubMedCrossRefGoogle Scholar
  67. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219(4587):979–980PubMedCrossRefGoogle Scholar
  68. Latunde-Dada GO, Xiang L, Simpson RJ, McKie AT (2011) Duodenal cytochrome b (Cybrd 1) and HIF-2alpha expression during acute hypoxic exposure in mice. Eur J Nutr 50(8):699–704PubMedCrossRefGoogle Scholar
  69. Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176PubMedCrossRefGoogle Scholar
  70. Lill R, Muhlenhoff U (2008) Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem 77:669–700PubMedCrossRefGoogle Scholar
  71. Lill R, Dutkiewicz R, Elsasser HP, Hausmann A, Netz DJ, Pierik AJ, Stehling O, Urzica E, Muhlenhoff U (2006) Mechanisms of iron-sulfur protein maturation in mitochondria, cytosol and nucleus of eukaryotes. Biochim Biophys Acta 1763(7):652–667PubMedCrossRefGoogle Scholar
  72. Lis A, Paradkar PN, Singleton S, Kuo HC, Garrick MD, Roth JA (2005) Hypoxia induces changes in expression of isoforms of the divalent metal transporter (DMT1) in rat pheochromocytoma (PC12) cells. Biochem Pharmacol 69(11):1647–1655PubMedCrossRefGoogle Scholar
  73. Liu X, Theil EC (2005) Ferritins: dynamic management of biological iron and oxygen chemistry. Acc Chem Res 38(3):167–175PubMedCrossRefGoogle Scholar
  74. Liuzzi JP, Lichten LA, Rivera S, Blanchard RK, Aydemir TB, Knutson MD, Ganz T, Cousins RJ (2005) Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci USA 102(19):6843–6848PubMedCrossRefGoogle Scholar
  75. Liuzzi JP, Aydemir F, Nam H, Knutson MD, Cousins RJ (2006) Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci USA 103(37):13612–13617PubMedCrossRefGoogle Scholar
  76. Lockman JA, Geldenhuys WJ, Bohn KA, Desilva SF, Allen DD, Van der Schyf CJ (2012) Differential effect of nimodipine in attenuating iron-induced toxicity in brain- and blood-brain barrier-associated cell types. Neurochem Res 37(1):134–142PubMedCrossRefGoogle Scholar
  77. Lodi R, Cooper JM, Bradley JL, Manners D, Styles P, Taylor DJ, Schapira AH (1999) Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc Natl Acad Sci USA 96(20):11492–11495PubMedCrossRefGoogle Scholar
  78. Ludwiczek S, Theurl I, Muckenthaler MU, Jakab M, Mair SM, Theurl M, Kiss J, Paulmichl M, Hentze MW, Ritter M, Weiss G (2007) Ca2+ channel blockers reverse iron overload by a new mechanism via divalent metal transporter-1. Nat Med 13(4):448–454PubMedCrossRefGoogle Scholar
  79. Mancuso C, Scapagini G, Curro D, Giuffrida Stella AM, De Marco C, Butterfield DA, Calabrese V (2007) Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci 12:1107–1123PubMedCrossRefGoogle Scholar
  80. Markesbery WR, Lovell MA (1998) Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol Aging 19(1):33–36PubMedCrossRefGoogle Scholar
  81. Martelli A, Wattenhofer-Donze M, Schmucker S, Bouvet S, Reutenauer L, Puccio H (2007) Frataxin is essential for extramitochondrial Fe–S cluster proteins in mammalian tissues. Hum Mol Genet 16(22):2651–2658PubMedCrossRefGoogle Scholar
  82. McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5(2):299–309PubMedCrossRefGoogle Scholar
  83. McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G, Mudaly E, Mudaly M, Richardson C, Barlow D, Bomford A, Peters TJ, Raja KB, Shirali S, Hediger MA, Farzaneh F, Simpson RJ (2001) An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291(5509):1755–1759PubMedCrossRefGoogle Scholar
  84. Meda L, Baron P, Scarlato G (2001) Glial activation in Alzheimer’s disease: the role of Abeta and its associated proteins. Neurobiol Aging 22(6):885–893PubMedCrossRefGoogle Scholar
  85. Mehlhase J, Sandig G, Pantopoulos K, Grune T (2005) Oxidation-induced ferritin turnover in microglial cells: role of proteasome. Free Radic Biol Med 38(2):276–285PubMedCrossRefGoogle Scholar
  86. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760PubMedCrossRefGoogle Scholar
  87. Mena NP, Bulteau AL, Salazar J, Hirsch EC, Núñez MT (2011) Effect of mitochondrial complex I inhibition on Fe–S cluster protein activity. Biochem Biophys Res Commun 409(2):241–246PubMedCrossRefGoogle Scholar
  88. Moos T, Morgan EH (1998) Evidence for low molecular weight, non-transferrin-bound iron in rat brain and cerebrospinal fluid. J Neurosci Res 54(4):486–494PubMedCrossRefGoogle Scholar
  89. Moos T, Rosengren Nielsen T (2006) Ferroportin in the postnatal rat brain: implications for axonal transport and neuronal export of iron. Semin Pediatr Neurol 13(3):149–157PubMedCrossRefGoogle Scholar
  90. Moos T, Rosengren Nielsen T, Skjorringe T, Morgan EH (2007) Iron trafficking inside the brain. J Neurochem 103(5):1730–1740PubMedCrossRefGoogle Scholar
  91. Mura C, Delgado R, Aguirre P, Bacigalupo J, Nuñez MT (2006) SHSY5Y neuroblastoma cells survival to iron challenge results in a quiescent and functional cell population. J Neurochem 98(1):11–19PubMedCrossRefGoogle Scholar
  92. Mwanjewe J, Grover AK (2004) Role of transient receptor potential canonical 6 (TRPC6) in non-transferrin-bound iron uptake in neuronal phenotype PC12 cells. Biochem J 378(Pt 3):975–982PubMedCrossRefGoogle Scholar
  93. Núñez MT, Gallardo V, Muñoz P, Tapia V, Esparza A, Salazar J, Speisky H (2004) Progressive iron accumulation induces a biphasic change in the glutathione content of neuroblastoma cells. Free Radic Biol Med 37(7):953–960PubMedCrossRefGoogle Scholar
  94. Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, Sharp JJ, Fujiwara Y, Barker JE, Fleming MD (2005) Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet 37(11):1264–1269PubMedCrossRefGoogle Scholar
  95. Ohgami RS, Campagna DR, McDonald A, Fleming MD (2006) The Steap proteins are metalloreductases. Blood 108(4):1388–1394PubMedCrossRefGoogle Scholar
  96. Oudit GY, Trivieri MG, Khaper N, Liu PP, Backx PH (2006) Role of L-type Ca2+ channels in iron transport and iron-overload cardiomyopathy. J Mol Med (Berl) 84(5):349–364CrossRefGoogle Scholar
  97. Paradkar PN, Roth JA (2006) Post-translational and transcriptional regulation of DMT1 during P19 embryonic carcinoma cell differentiation by retinoic acid. Biochem J 394(Pt 1):173–183PubMedGoogle Scholar
  98. Parker WD Jr, Parks J, Filley CM, Kleinschmidt-DeMasters BK (1994) Electron transport chain defects in Alzheimer’s disease brain. Neurology 44(6):1090–1096PubMedCrossRefGoogle Scholar
  99. Pelizzoni I, Macco R, Morini MF, Zacchetti D, Grohovaz F, Codazzi F (2011) Iron handling in hippocampal neurons: activity-dependent iron entry and mitochondria-mediated neurotoxicity. Aging Cell 10(1):172–183PubMedCrossRefGoogle Scholar
  100. Perry TL, Godin DV, Hansen S (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 33(3):305–310PubMedCrossRefGoogle Scholar
  101. Perry G, Taddeo MA, Petersen RB, Castellani RJ, Harris PL, Siedlak SL, Cash AD, Liu Q, Nunomura A, Atwood CS, Smith MA (2003) Adventiously-bound redox active iron and copper are at the center of oxidative damage in Alzheimer disease. Biometals 16(1):77–81PubMedCrossRefGoogle Scholar
  102. Qian ZM, Wu XM, Fan M, Yang L, Du F, Yung WH, Ke Y (2011) Divalent metal transporter 1 is a hypoxia-inducible gene. J Cell Physiol 226(6):1596–1603PubMedCrossRefGoogle Scholar
  103. Quintana C, Bellefqih S, Laval JY, Guerquin-Kern JL, Wu TD, Avila J, Ferrer I, Arranz R, Patino C (2006) Study of the localization of iron, ferritin, and hemosiderin in Alzheimer’s disease hippocampus by analytical microscopy at the subcellular level. J Struct Biol 153(1):42–54PubMedCrossRefGoogle Scholar
  104. Ramirez G, Rey S, von Bernhardi R (2008) Proinflammatory stimuli are needed for induction of microglial cell-mediated AbetaPP_{244-C} and Abeta-neurotoxicity in hippocampal cultures. J Alzheimers Dis 15(1):45–59PubMedGoogle Scholar
  105. Reynolds MR, Berry RW, Binder LI (2007) Nitration in neurodegeneration: deciphering the “Hows” “nYs”. Biochemistry 46(25):7325–7336PubMedCrossRefGoogle Scholar
  106. Rouault TA, Zhang DL, Jeong SY (2009) Brain iron homeostasis, the choroid plexus, and localization of iron transport proteins. Metab Brain Dis 24(4):673–684PubMedCrossRefGoogle Scholar
  107. Salazar J, Mena N, Hunot S, Prigent A, Alvarez-Fischer D, Arredondo M, Duyckaerts C, Sazdovitch V, Zhao L, Garrick LM, Núñez MT, Garrick MD, Raisman-Vozari R, Hirsch EC (2008) Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci USA 105(47):18578–18583PubMedCrossRefGoogle Scholar
  108. Salgado JC, Olivera-Nappa A, Gerdtzen ZP, Tapia V, Theil EC, Conca C, Núñez MT (2010) Mathematical modeling of the dynamic storage of iron in ferritin. BMC Syst Biol 4:147PubMedCrossRefGoogle Scholar
  109. Sayre LM, Perry G, Atwood CS, Smith MA (2000) The role of metals in neurodegenerative diseases. Cell Mol Biol (Noisy-le-grand) 46(4):731–741Google Scholar
  110. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30(11):1191–1212PubMedCrossRefGoogle Scholar
  111. Schapira AH (2006) Mitochondrial disease. Lancet 368(9529):70–82PubMedCrossRefGoogle Scholar
  112. Schapira AH, Gegg M (2011) Mitochondrial contribution to Parkinson’s disease pathogenesis. Parkinsons Dis 2011:159160PubMedGoogle Scholar
  113. Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54(3):823–827PubMedCrossRefGoogle Scholar
  114. Shachar DB, Kahana N, Kampel V, Warshawsky A, Youdim MB (2004) Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lession in rats. Neuropharmacology 46(2):254–263PubMedCrossRefGoogle Scholar
  115. Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, Gwynn B, Lambert AJ, Wingert RA, Traver D, Trede NS, Barut BA, Zhou Y, Minet E, Donovan A, Brownlie A, Balzan R, Weiss MJ, Peters LL, Kaplan J, Zon LI, Paw BH (2006) Mitoferrin is essential for erythroid iron assimilation. Nature 440(7080):96–100PubMedCrossRefGoogle Scholar
  116. Sheftel A, Stehling O, Lill R (2010) Iron-sulfur proteins in health and disease. Trends Endocrinol Metab 21(5):302–314PubMedCrossRefGoogle Scholar
  117. Shi Q, Gibson GE (2007) Oxidative stress and transcriptional regulation in Alzheimer disease. Alzheimer Dis Assoc Disord 21(4):276–291PubMedCrossRefGoogle Scholar
  118. Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P, Marsden CD (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36(3):348–355PubMedCrossRefGoogle Scholar
  119. Sienko MJ, Plane RA (1976) Chemistry, 5th edn. McGraw-Hill, New YorkGoogle Scholar
  120. Snyder AM, Connor JR (2009) Iron, the substantia nigra and related neurological disorders. Biochim Biophys Acta 1790(7):606–614PubMedCrossRefGoogle Scholar
  121. Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G, Youdim MB (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74(3):199–205PubMedCrossRefGoogle Scholar
  122. Song N, Wang J, Jiang H, Xie J (2010) Ferroportin 1 but not hephaestin contributes to iron accumulation in a cell model of Parkinson’s disease. Free Radic Biol Med 48(2):332–341PubMedCrossRefGoogle Scholar
  123. Spiro TG, Salman P (1974) Inorganic chemistry. In: Jacobs A, Worwood M (eds) Iron in biochemistry and medicine. Academic Press, New York, pp 1–28Google Scholar
  124. Symons MCR, Gutteridge JMC (1998) Free radicals and iron: chemistry, biology, and medicine. Oxford University Press, OxfordGoogle Scholar
  125. Thompson KJ, Shoham S, Connor JR (2001) Iron and neurodegenerative disorders. Brain Res Bull 55(2):155–164PubMedCrossRefGoogle Scholar
  126. Todorich B, Zhang X, Connor JR (2011) H-ferritin is the major source of iron for oligodendrocytes. Glia 59(6):927–935PubMedCrossRefGoogle Scholar
  127. Tulpule K, Robinson SR, Bishop GM, Dringen R (2010) Uptake of ferrous iron by cultured rat astrocytes. J Neurosci Res 88(3):563–571PubMedGoogle Scholar
  128. Unciuleac M, Warkentin E, Page CC, Boll M, Ermler U (2004) Structure of a xanthine oxidase-related 4-hydroxybenzoyl-CoA reductase with an additional [4Fe–4S] cluster and an inverted electron flow. Structure 12(12):2249–2256PubMedGoogle Scholar
  129. Vargas JD, Herpers B, McKie AT, Gledhill S, McDonnell J, van den Heuvel M, Davies KE, Ponting CP (2003) Stromal cell-derived receptor 2 and cytochrome b561 are functional ferric reductases. Biochim Biophys Acta 1651(1–2):116–123PubMedGoogle Scholar
  130. Vidal R, Delisle MB, Rascol O, Ghetti B (2003) Hereditary ferritinopathy. J Neurol Sci 207(1–2):110–111PubMedCrossRefGoogle Scholar
  131. von Bernhardi R (2007) Glial cell dysregulation: a new perspective on Alzheimer disease. Neurotoxic Res 12(4):215–232CrossRefGoogle Scholar
  132. Vymazal J, Righini A, Brooks RA, Canesi M, Mariani C, Leonardi M, Pezzoli G (1999) T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: relation to iron content. Radiology 211(2):489–495PubMedGoogle Scholar
  133. Wallander ML, Leibold EA, Eisenstein RS (2006) Molecular control of vertebrate iron homeostasis by iron regulatory proteins. Biochim Biophys Acta 1763(7):668–689PubMedCrossRefGoogle Scholar
  134. Wang D, Wang LH, Zhao Y, Lu YP, Zhu L (2010) Hypoxia regulates the ferrous iron uptake and reactive oxygen species level via divalent metal transporter 1 (DMT1) Exon1B by hypoxia-inducible factor-1. IUBMB Life 62(8):629–636PubMedCrossRefGoogle Scholar
  135. Weinreb O, Amit T, Mandel S, Youdim MB (2011) Novel therapeutic approach for neurodegenerative pathologies: multitarget iron-chelating drugs regulating hypoxia-inducible factor 1 signal transduction pathway. Neurodegener Dis. [Epub ahead of print]Google Scholar
  136. Williams K, Wilson MA, Bressler J (2000) Regulation and developmental expression of the divalent metal-ion transporter in the rat brain. Cell Mol Biol (Noisy-le-grand) 46(3):563–571Google Scholar
  137. Wilson RB (2006) Iron dysregulation in Friedreich ataxia. Semin Pediatr Neurol 13(3):166–175PubMedCrossRefGoogle Scholar
  138. Wood PM (1988) The potential diagram for oxygen at pH 7. Biochem J 253(1):287–289PubMedGoogle Scholar
  139. Wright RO, Baccarelli A (2007) Metals and neurotoxicology. J Nutr 137(12):2809–2813PubMedGoogle Scholar
  140. Yamada M (2004) Cerebral amyloid angiopathy and gene polymorphisms. J Neurol Sci 226(1–2):41–44PubMedCrossRefGoogle Scholar
  141. Yang F, Liu XB, Quinones M, Melby PC, Ghio A, Haile DJ (2002) Regulation of reticuloendothelial iron transporter MTP1 (Slc11a3) by inflammation. J Biol Chem 277(42):39786–39791PubMedCrossRefGoogle Scholar
  142. Yasha TC, Shankar L, Santosh V, Das S, Shankar SK (1997) Histopathological & immunohistochemical evaluation of ageing changes in normal human brain. Indian J Med Res 105:141–150PubMedGoogle Scholar
  143. Ye H, Rouault TA (2010) Erythropoiesis and iron sulfur cluster biogenesis. Adv Hematol 2010Google Scholar
  144. Youdim MB, Buccafusco JJ (2005) Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol Sci 26(1):27–35PubMedCrossRefGoogle Scholar
  145. Youdim MB, Ben-Shachar D, Riederer P (1989) Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol Scand Suppl 126:47–54PubMedCrossRefGoogle Scholar
  146. Youdim MB, Stephenson G, Ben-Shachar D (2004) Ironing iron out in Parkinson’s disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28. Ann N Y Acad Sci 1012:306–325PubMedCrossRefGoogle Scholar
  147. Zecca L, Tampellini D, Gatti A, Crippa R, Eisner M, Sulzer D, Ito S, Fariello R, Gallorini M (2002) The neuromelanin of human substantia nigra and its interaction with metals. J Neural Transm 109(5–6):663–672PubMedCrossRefGoogle Scholar
  148. Zecca L, Zucca FA, Wilms H, Sulzer D (2003) Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci 26(11):578–580PubMedCrossRefGoogle Scholar
  149. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863–873PubMedCrossRefGoogle Scholar
  150. Zhang Y, Marcillat O, Giulivi C, Ernster L, Davies KJ (1990) The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem 265(27):16330–16336PubMedGoogle Scholar
  151. Zheng H, Youdim MB, Fridkin M (2010) Site-activated chelators targeting acetylcholinesterase and monoamine oxidase for Alzheimer’s therapy. ACS Chem Biol 5(6):603–610PubMedCrossRefGoogle Scholar
  152. Zhu W, Xie W, Pan T, Xu P, Fridkin M, Zheng H, Jankovic J, Youdim MB, Le W (2007) Prevention and restoration of lactacystin-induced nigrostriatal dopamine neuron degeneration by novel brain-permeable iron chelators. FASEB J 21(14):3835–3844PubMedCrossRefGoogle Scholar
  153. Zoccarato F, Toscano P, Alexandre A (2005) Dopamine-derived dopaminochrome promotes H(2)O(2) release at mitochondrial complex I: stimulation by rotenone, control by Ca(2+), and relevance to Parkinson disease. J Biol Chem 280(16):15587–15594PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Marco T. Núñez
    • 1
  • Pamela Urrutia
    • 1
  • Natalia Mena
    • 1
  • Pabla Aguirre
    • 1
  • Victoria Tapia
    • 1
  • Julio Salazar
    • 1
  1. 1.Department of Biology, Faculty of SciencesUniversidad de Chile and Cell Dynamics and Biotechnology InstituteSantiagoChile

Personalised recommendations