Advertisement

BioMetals

, Volume 25, Issue 1, pp 1–8 | Cite as

ZnT3: a zinc transporter active in several organs

  • Kamille SmidtEmail author
  • Jørgen Rungby
Article

Abstract

The review collects the emerging information about zinc transporter 3 (ZnT3). ZnT3 has been associated with Alzheimer’s disease, airway diseases and diabetes. ZnT3 was discovered and cloned in 1996. Since then, the major interest in the protein has been in its ability to transport zinc into pre-synaptic vesicles of glutamatergic neurones and its role during the development of amyloid β plaques in Alzheimer’s disease. Increasing evidence suggests that ZnT3 is present in various cell types like different cell types in the brain, cells from adipose tissue, beta-cells from pancreatic islets, epithelial cells, cells from testis, prostate cancer cells and cells from retina. The expression of ZnT3 is regulated by age, hormones, fatty acids, zinc chelation, and glucose.

Keywords

Slc30A3 ZnT3 Zinc transport Apoptosis Alzheimer’s disease Diabetes 

Reference

  1. Ackland ML, Zou L, Freestone D, van de WS, Michalczyk AA (2007) Diesel exhaust particulate matter induces multinucleate cells and zinc transporter-dependent apoptosis in human airway cells. Immunol Cell Biol 85:617–622PubMedCrossRefGoogle Scholar
  2. Adlard PA, Parncutt JM, Finkelstein DI, Bush AI (2010) Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J Neurosci 30:1631–1636PubMedCrossRefGoogle Scholar
  3. Askanas V, Engel WK (2001) Inclusion-body myositis: newest concepts of pathogenesis and relation to aging and Alzheimer disease. J Neuropathol Exp Neurol 60:1–14PubMedGoogle Scholar
  4. Atwood CS, Perry G, Zeng H, Kato Y, Jones WD, Ling KQ, Huang X, Moir RD, Wang D, Sayre LM, Smith MA, Chen SG, Bush AI (2004) Copper mediates dityrosine cross-linking of Alzheimer’s amyloid-beta. Biochemistry 43:560–568PubMedCrossRefGoogle Scholar
  5. Bellomo EA, Meur G, Rutter GA (2011) Glucose regulates free cytosolic Zn2+ concentration, Slc39 (ZiP) and metallothionein gene expression in primary pancreatic islet {beta}-cells. J Biol Chem 286(29):25778–25789PubMedCrossRefGoogle Scholar
  6. Bendtsen JD, Nielsen H, von HG, Brunak S (2004) Improved prediction of signal peptides: signalp 3.0. J Mol Biol 340:783–795PubMedCrossRefGoogle Scholar
  7. Beyer N, Coulson DT, Heggarty S, Ravid R, Irvine GB, Hellemans J, Johnston JA (2009) ZnT3 mRNA levels are reduced in Alzheimer’s disease post-mortem brain. Mol Neurodegener 4:53PubMedCrossRefGoogle Scholar
  8. Butler A (1998) Acquisition and utilization of transition metal ions by marine organisms. Science 281:207–210PubMedCrossRefGoogle Scholar
  9. Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim Y, Huang X, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters CL, Bush AI (2001) Treatment with a copper–zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665–676PubMedCrossRefGoogle Scholar
  10. Cho E, Hwang JJ, Han SH, Chung SJ, Koh JY, Lee JY (2010) Endogenous zinc mediates apoptotic programmed cell death in the developing brain. Neurotox Res 17:156–166PubMedCrossRefGoogle Scholar
  11. Clifford KS, MacDonald MJ (2000) Survey of mRNAs encoding zinc transporters and other metal complexing proteins in pancreatic islets of rats from birth to adulthood: similar patterns in the Sprague–Dawley and Wistar BB strains. Diabetes Res Clin Pract 49:77–85PubMedCrossRefGoogle Scholar
  12. Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD (1999) Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc Natl Acad Sci USA 96:1716–1721PubMedCrossRefGoogle Scholar
  13. Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281(34):24085–24089PubMedCrossRefGoogle Scholar
  14. Cummings JE, Kovacic JP (2009) The ubiquitous role of zinc in health and disease. J Vet Emerg Crit Care (San Antonio) 19:215–240CrossRefGoogle Scholar
  15. Deshpande A, Kawai H, Metherate R, Glabe CG, Busciglio J (2009) A role for synaptic zinc in activity-dependent Abeta oligomer formation and accumulation at excitatory synapses. J Neurosci 29:4004–4015PubMedCrossRefGoogle Scholar
  16. Devergnas S, Chimienti F, Naud N, Pennequin A, Coquerel Y, Chantegrel J, Favier A, Seve M (2004) Differential regulation of zinc efflux transporters ZnT-1, ZnT-5 and ZnT-7 gene expression by zinc levels: a real-time RT-PCR study. Biochem Pharmacol 68:699–709PubMedCrossRefGoogle Scholar
  17. Devirgiliis C, Zalewski PD, Perozzi G, Murgia C (2007) Zinc fluxes and zinc transporter genes in chronic diseases. Mutat Res 622:84–93PubMedCrossRefGoogle Scholar
  18. Doering P, Stoltenberg M, Penkowa M, Rungby J, Larsen A, Danscher G (2010) Chemical blocking of zinc ions in CNS increases neuronal damage following traumatic brain injury (TBI) in mice. PLoS One 5:e10131PubMedCrossRefGoogle Scholar
  19. Eide DJ (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta 1763:711–722PubMedCrossRefGoogle Scholar
  20. Feng P, Li T, Guan Z, Franklin RB, Costello LC (2008) The involvement of Bax in zinc-induced mitochondrial apoptogenesis in malignant prostate cells. Mol Cancer 7:25PubMedCrossRefGoogle Scholar
  21. Formigari A, Irato P, Santon A (2007) Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: biochemical and cytochemical aspects. Comp Biochem Physiol C Toxicol Pharmacol 146:443–459PubMedCrossRefGoogle Scholar
  22. Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. Biometals 14:251–270PubMedCrossRefGoogle Scholar
  23. Garcia-Castineiras S, Dillon J, Spector A (1978) Detection of bityrosine in cataractous human lens protein. Science 199:897–899PubMedCrossRefGoogle Scholar
  24. Giulivi C, Davies KJ (1994) Dityrosine: a marker for oxidatively modified proteins and selective proteolysis. Methods Enzymol 233:363–371PubMedCrossRefGoogle Scholar
  25. Gyulkhandanyan AV, Lu H, Lee SC, Bhattacharjee A, Wijesekara N, Fox JE, MacDonald PE, Chimienti F, Dai FF, Wheeler MB (2008) Investigation of transport mechanisms and regulation of intracellular Zn2+ in pancreatic alpha-cells. J Biol Chem 283:10184–10197PubMedCrossRefGoogle Scholar
  26. Haase H, Watjen W, Beyersmann D (2001) Zinc induces apoptosis that can be suppressed by lanthanum in C6 rat glioma cells. Biol Chem 382:1227–1234PubMedCrossRefGoogle Scholar
  27. Heinecke JW (2002) Oxidized amino acids: culprits in human atherosclerosis and indicators of oxidative stress. Free Radic Biol Med 32:1090–1101PubMedCrossRefGoogle Scholar
  28. Iguchi K, Otsuka T, Usui S, Ishii K, Onishi T, Sugimura Y, Hirano K (2004) Zinc and metallothionein levels and expression of zinc transporters in androgen-independent subline of LNCaP cells. J Androl 25:154–161PubMedGoogle Scholar
  29. Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M (2004) Overview of mammalian zinc transporters. Cell Mol Life Sci 61:49–68PubMedCrossRefGoogle Scholar
  30. Kirchhoff K, Machicao F, Haupt A, Schafer SA, Tschritter O, Staiger H, Stefan N, Haring HU, Fritsche A (2008) Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51:597–601PubMedCrossRefGoogle Scholar
  31. Lee JY, Cole TB, Palmiter RD, Suh SW, Koh JY (2002) Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc Natl Acad Sci USA 99:7705–7710PubMedCrossRefGoogle Scholar
  32. Lee JY, Kim JH, Hong SH, Lee JY, Cherny RA, Bush AI, Palmiter RD, Koh JY (2004) Estrogen decreases zinc transporter 3 expression and synaptic vesicle zinc levels in mouse brain. J Biol Chem 279:8602–8607PubMedCrossRefGoogle Scholar
  33. Lemaire K, Ravier MA, Schraenen A, Creemers JW, Van de Plas R, Granvik M, Van LL, Waelkens E, Chimienti F, Rutter GA, Gilon P, In’t Veld PA, Schuit FC (2009) Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc Natl Acad Sci USA 106:14872–14877PubMedCrossRefGoogle Scholar
  34. MacDiarmid CW, Milanick MA, Eide DJ (2002) Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae. J Biol Chem 277:39187–39194PubMedCrossRefGoogle Scholar
  35. MacDonald PE, De Marinis YZ, Ramracheya R, Salehi A, Ma X, Johnson PR, Cox R, Eliasson L, Rorsman P (2007) A K ATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans. PLoS Biol 5:e143PubMedCrossRefGoogle Scholar
  36. McCall KA, Huang C, Fierke CA (2000) Function and mechanism of zinc metalloenzymes. J Nutr 130:1437S–1446SPubMedGoogle Scholar
  37. Nicolson TJ, Bellomo EA, Wijesekara N, Loder MK, Baldwin JM, Gyulkhandanyan AV, Koshkin V, Tarasov AI, Carzaniga R, Kronenberger K, Taneja TK, da SX, Libert S, Froguel P, Scharfmann R, Stetsyuk V, Ravassard P, Parker H, Gribble FM, Reimann F, Sladek R, Hughes SJ, Johnson PR, Masseboeuf M, Burcelin R, Baldwin SA, Liu M, Lara-Lemus R, Arvan P, Schuit FC, Wheeler MB, Chimienti F, Rutter GA (2009) Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 58:2070–2083PubMedCrossRefGoogle Scholar
  38. Olsen HL, Hoy M, Zhang W, Bertorello AM, Bokvist K, Capito K, Efanov AM, Meister B, Thams P, Yang SN, Rorsman P, Berggren PO, Gromada J (2003) Phosphatidylinositol 4-kinase serves as a metabolic sensor and regulates priming of secretory granules in pancreatic beta cells. Proc Natl Acad Sci USA 100:5187–5192PubMedCrossRefGoogle Scholar
  39. Palmiter RD, Cole TB, Quaife CJ, Findley SD (1996) ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci USA 93:14934–14939PubMedCrossRefGoogle Scholar
  40. Petersen AB, Smidt K, Magnusson NE, Moore F, Egefjord L, Rungby J (2011) siRNA-mediated knock-down of ZnT3 and ZnT8 affects production and secretion of insulin and apoptosis in INS-1E cells. APMIS 119:93–102PubMedCrossRefGoogle Scholar
  41. Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7:1342–1365PubMedCrossRefGoogle Scholar
  42. Redenti S, Chappell RL (2004) Localization of zinc transporter-3 (ZnT-3) in mouse retina. Vision Res 44:3317–3321PubMedCrossRefGoogle Scholar
  43. Salazar G, Love R, Werner E, Doucette MM, Cheng S, Levey A, Faundez V (2004) The zinc transporter ZnT3 interacts with AP-3 and it is preferentially targeted to a distinct synaptic vesicle subpopulation. Mol Biol Cell 15:575–587PubMedCrossRefGoogle Scholar
  44. Salazar G, Craige B, Wainer BH, Guo J, De CP, Faundez V (2005) Phosphatidylinositol-4-kinase type II alpha is a component of adaptor protein-3-derived vesicles. Mol Biol Cell 16:3692–3704PubMedCrossRefGoogle Scholar
  45. Salazar G, Falcon-Perez JM, Harrison R, Faundez V (2009) SLC30A3 (ZnT3) oligomerization by dityrosine bonds regulates its subcellular localization and metal transport capacity. PLoS One 4:e5896PubMedCrossRefGoogle Scholar
  46. Selkoe DJ (1998) The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol 8:447–453PubMedCrossRefGoogle Scholar
  47. Sensi SL, Paoletti P, Bush AI, Sekler I (2009) Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 10:780–791PubMedCrossRefGoogle Scholar
  48. Smidt K, Pedersen SB, Brock B, Schmitz O, Fisker S, Bendix J, Wogensen L, Rungby J (2007) Zinc-transporter genes in human visceral and subcutaneous adipocytes: lean versus obese. Mol Cell Endocrinol 264:68–73PubMedCrossRefGoogle Scholar
  49. Smidt K, Jessen N, Petersen AB, Larsen A, Magnusson NE, Jeppesen JB, Stoltenberg M, Culvenor J, Tsatsanis A, Brock B, Schmitz O, Wogensen L, Bush AI, Rungby J (2009) SLC30A3 responds to glucose-and zinc variations in beta-cells and is critical for insulin production and in vivo glucose-metabolism during beta-cell stress. PLoS ONE 4:1–12CrossRefGoogle Scholar
  50. Stoltenberg M, Bush AI, Bach G, Smidt K, Larsen A, Rungby J, Lund S, Doering P, Danscher G (2007) Amyloid plaques arise from zinc-enriched cortical layers in APP/PS1 transgenic mice and are paradoxically enlarged with dietary zinc deficiency. Neuroscience 150:357–369PubMedCrossRefGoogle Scholar
  51. Suphioglu C, De MD, Kumar L, Sadli N, Freestone D, Michalczyk A, Sinclair A, Ackland ML (2010) The omega-3 fatty acid, DHA, decreases neuronal cell death in association with altered zinc transport. FEBS Lett 584:612–618PubMedCrossRefGoogle Scholar
  52. Walsh DM, Tseng BP, Rydel RE, Podlisny MB, Selkoe DJ (2000) The oligomerization of amyloid beta-protein begins intracellularly in cells derived from human brain. Biochemistry 39:10831–10839PubMedCrossRefGoogle Scholar
  53. Wang ZY, Danscher G, Dahlstrom A, Li JY (2003) Zinc transporter 3 and zinc ions in the rodent superior cervical ganglion neurons. Neuroscience 120:605–616PubMedCrossRefGoogle Scholar
  54. Wang ZY, Stoltenberg M, Jo SM, Huang L, Larsen A, Dahlstrom A, Danscher G (2004) Dynamic zinc pools in mouse choroid plexus. Neuroreport 15:1801–1804PubMedCrossRefGoogle Scholar
  55. Wang ZY, Stoltenberg M, Huang L, Danscher G, Dahlstrom A, Shi Y, Li JY (2005) Abundant expression of zinc transporters in Bergman glia of mouse cerebellum. Brain Res Bull 64:441–448PubMedCrossRefGoogle Scholar
  56. Wastney ME, Aamodt RL, Rumble WF, Henkin RI (1986) Kinetic analysis of zinc metabolism and its regulation in normal humans. Am J Physiol 251:R398–R408PubMedGoogle Scholar
  57. Watjen W, Haase H, Biagioli M, Beyersmann D (2002) Induction of apoptosis in mammalian cells by cadmium and zinc. Environ Health Perspect 110(Suppl 5):865–867PubMedCrossRefGoogle Scholar
  58. Wei Y, Fu D (2006) Binding and transport of metal ions at the dimer interface of the Escherichia coli metal transporter YiiP. J Biol Chem 281:23492–23502PubMedCrossRefGoogle Scholar
  59. Wenzel HJ, Cole TB, Born DE, Schwartzkroin PA, Palmiter RD (1997) Ultrastructural localization of zinc transporter-3 (ZnT-3) to synaptic vesicle membranes within mossy fiber boutons in the hippocampus of mouse and monkey. Proc Natl Acad Sci USA 94:12676–12681PubMedCrossRefGoogle Scholar
  60. Westermark P, Li ZC, Westermark GT, Leckstrom A, Steiner DF (1996) Effects of beta cell granule components on human islet amyloid polypeptide fibril formation. FEBS Lett 379:203–206PubMedCrossRefGoogle Scholar
  61. Wijesekara N, Chimienti F, Wheeler MB (2009) Zinc, a regulator of islet function and glucose homeostasis. Diabetes Obes Metab 11(Suppl 4):202–214PubMedCrossRefGoogle Scholar
  62. Wongdee K, Teerapornpuntakit J, Riengrojpitak S, Krishnamra N, Charoenphandhu N (2009) Gene expression profile of duodenal epithelial cells in response to chronic metabolic acidosis. Mol Cell Biochem 321:173–188PubMedCrossRefGoogle Scholar
  63. Zhang LH, Wang X, Stoltenberg M, Danscher G, Huang L, Wang ZY (2008) Abundant expression of zinc transporters in the amyloid plaques of Alzheimer’s disease brain. Brain Res Bull 77:55–60PubMedCrossRefGoogle Scholar
  64. Zheng W, Wang T, Yu D, Feng WY, Nie YX, Stoltenberg M, Danscher G, Wang ZY (2010) Elevation of zinc transporter ZnT3 protein in the cerebellar cortex of the AbetaPP/PS1 transgenic mouse. J Alzheimers Dis 20:323–331PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of AarhusAarhusDenmark
  2. 2.Department of EndocrinologyAarhus University HospitalAarhusDenmark

Personalised recommendations