, Volume 24, Issue 6, pp 1133–1151 | Cite as

Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network

  • Pieter Monsieurs
  • Hugo Moors
  • Rob Van Houdt
  • Paul J. Janssen
  • Ann Janssen
  • Ilse Coninx
  • Max Mergeay
  • Natalie Leys


The soil bacterium Cupriavidus metallidurans CH34 contains a high number of heavy metal resistance genes making it an interesting model organism to study microbial responses to heavy metals. In this study the transcriptional response of strain CH34 was measured when challenged to sub-lethal concentrations of various essential or toxic metals. Based on the global transcriptional responses for each challenge and the overlap in upregulated genes between different metal responses, the sixteen metals were clustered in three groups. In addition, the transcriptional response of already known metal resistance genes was assessed, and new metal response gene clusters were identified. The majority of the studied metal response loci showed similar expression profiles when cells were exposed to different metals, suggesting complex interplay at transcriptional level between the different metal responses. The pronounced redundancy of these metal resistant regions—as illustrated by the large number of paralogous genes—combined with the phylogenetic distribution of these metal response regions within either evolutionary related or other metal resistant bacteria, provides important insights on the recent evolutionary forces shaping this naturally soil-dwelling bacterium into a highly metal-resistant strain well adapted to harsh and anthropogenic environments.


Transcriptomics Cupriavidus metallidurans CH34 Transcriptional regulation Metal resistance Regulatory networks 



This work is supported by internal funds of SCK·CEN and by the European Space Agency through the MESSAGE contracts (PRODEX agreements No. 90037 and 90094).

Supplementary material

10534_2011_9473_MOESM1_ESM.pdf (55 kb)
Supplementary File 1: Overview of the total number of upregulated genes and split up per replicon, after exposure of C. metallidurans CH34 to a given metal. obs.: the number of upregulated genes located on a specific replicon for a certain metal. exp: the number of expected genes relative to the total number of upregulated genes and the size of the replicon. fold: the fold-change of the number of observed over the number of expected genes. pval: the p-value for a significant enrichment of metal response genes on that replicon based on the hypergeometric distribution. Red colored fields indicate a statistically significant enrichment.(PDF 54 kb)
10534_2011_9473_MOESM2_ESM.pdf (1.7 mb)
Supplementary File 2: Detailed expression data for all upregulated genes upon metal exposure. Excel file containing all upregulated genes. Different columns are: (A) Probe ID: Probe Identifier, (B) Rmet: Gene number, (C) Genename: gene name, (D) Replicon: accession number of replicon, (E) Product: gene function, (F) cluster name: name of cluster where the gene belongs to, (G) COG: COG classes where the gene belongs to, (H) KEGG: KEGG pathway where the gene belongs to, (I-X) log2 fold changes after induction with one of the 16 metals (#N/A means no measurement). Color code represents: Red = more than 4-fold upregulated, Orange = between 2- and 4-fold upregulated, Green = more than 2-fold down-regulated.(PDF 1752 kb)
10534_2011_9473_MOESM3_ESM.pdf (200 kb)
Supplementary File 3: Detailed discussion of metal response regions not discussed in manuscript. (PDF 199 kb)
10534_2011_9473_MOESM4_ESM.ppt (524 kb)
Supplementary File 4: Visual summary of the different metal response regions in C. metallidurans CH34. In the vertical axis the different regions are listed (replicon name + name or location of the region). In the horizontal axis, the different metals that were tested are shown. The number indicated on the figure indicates the percentage of genes belong to a certain region that is upregulated by a specific metal.(PPT 523 kb)


  1. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300Google Scholar
  2. Brim H, Heuer H, Krogerrecklenfort E, Mergeay M, Smalla K (1999) Characterization of the bacterial community of a zinc-polluted soil. Can J Microbiol 45:326–338PubMedCrossRefGoogle Scholar
  3. Chen P, Greenberg B, Taghavi S, Romano C, van der Lelie D, He C (2005) An exceptionally selective lead(II)-regulatory protein from Ralstonia metallidurans: development of a fluorescent lead(II) probe. Angew Chem Int Ed Engl 44:2715–2719PubMedCrossRefGoogle Scholar
  4. De Angelis F, Lee JK, O’Connell JD III, Miercke LJ, Verschueren KH, Srinivasan V, Bauvois C, Govaerts C, Robbins RA, Ruysschaert JM, Stroud RM, Vandenbussche G (2010) Metal-induced conformational changes in ZneB suggest an active role of membrane fusion proteins in efflux resistance systems. Proc Natl Acad Sci USA 107:11038–11043PubMedCrossRefGoogle Scholar
  5. Diels L, Mergeay M (1990) DNA probe-mediated detection of resistant bacteria from soils highly polluted by heavy metals. Appl Environ Microbiol 56:1485–1491PubMedGoogle Scholar
  6. Dong Q, Mergeay M (1994) Czc/cnr efflux: a three-component chemiosmotic antiport pathway with a 12-transmembrane-helix protein. Mol Microbiol 14:185–187PubMedCrossRefGoogle Scholar
  7. Dressler C, Kues U, Nies DH, Friedrich B (1991) Determinants encoding resistance to several heavy metals in newly isolated copper-resistant bacteria. Appl Environ Microbiol 57:3079–3085PubMedGoogle Scholar
  8. Goris J, De Vos P, Coenye T, Hoste B, Janssens D, Brim H, Diels L, Mergeay M, Kersters K, Vandamme P (2001) Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al. 1998 emend. Int J Syst Evol Microbiol 51:1773–1782PubMedCrossRefGoogle Scholar
  9. Grass G, Grosse C, Nies DH (2000) Regulation of the cnr cobalt and nickel resistance determinant from Ralstonia sp. strain CH34. J Bacteriol 182:1390–1398PubMedCrossRefGoogle Scholar
  10. Grosse C, Anton A, Hoffmann T, Franke S, Schleuder G, Nies DH (2004) Identification of a regulatory pathway that controls the heavy-metal resistance system Czc via promoter czcNp in Ralstonia metallidurans. Arch Microbiol 182:109–118PubMedCrossRefGoogle Scholar
  11. Grosse C, Friedrich S, Nies DH (2007) Contribution of extracytoplasmic function sigma factors to transition metal homeostasis in Cupriavidus metallidurans strain CH34. J Mol Microbiol Biotechnol 12:227–240PubMedCrossRefGoogle Scholar
  12. Henne KL, Nakatsu CH, Thompson DK, Konopka AE (2009a) High-level chromate resistance in Arthrobacter sp. strain FB24 requires previously uncharacterized accessory genes. BMC Microbiol 9:199PubMedCrossRefGoogle Scholar
  13. Henne KL, Turse JE, Nicora CD, Lipton MS, Tollaksen SL, Lindberg C, Babnigg G, Giometti CS, Nakatsu CH, Thompson DK, Konopka AE (2009b) Global proteomic analysis of the chromate response in Arthrobacter sp. strain FB24. J Proteome Res 8:1704–1716PubMedCrossRefGoogle Scholar
  14. Hobman JL, Yamamoto K, Oshima T (2007) Transcriptomic responses of bacterial cells to sublethal metal ion stress. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Springer Verlag Microbial Monographs. Springer, Berlin, pp 73–116Google Scholar
  15. Hynninen A, Touze T, Pitkanen L, Mengin-Lecreulx D, Virta M (2009) An efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria. Mol Microbiol 74:384–394PubMedCrossRefGoogle Scholar
  16. Imbeaud S, Graudens E, Boulanger V, Barlet X, Zaborski P, Eveno E, Mueller O, Schroeder A, Auffray C (2005) Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res 33:e56PubMedCrossRefGoogle Scholar
  17. Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A, Benotmane MA, Leys N, Vallaeys T, Lapidus A, Monchy S, Medigue C, Taghavi S, McCorkle S, Dunn J, van der Lelie D, Mergeay M (2010) The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS ONE 5:e10433PubMedCrossRefGoogle Scholar
  18. Jian X, Wasinger EC, Lockard JV, Chen LX, He C (2009) Highly Sensitive and Selective Gold(I) Recognition by a Metalloregulator in Ralstonia metallidurans. J Am Chem Soc 131:10968–10971CrossRefGoogle Scholar
  19. Juhnke S, Peitzsch N, Hubener N, Grosse C, Nies DH (2002) New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol 179:15–25PubMedCrossRefGoogle Scholar
  20. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484PubMedCrossRefGoogle Scholar
  21. Kaur A, Pan M, Meislin M, Facciotti MT, El-Gewely R, Baliga NS (2006) A systems view of haloarchaeal strategies to withstand stress from transition metals. Genome Res 16:841–854PubMedCrossRefGoogle Scholar
  22. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645PubMedCrossRefGoogle Scholar
  23. Ledgham F, Quest B, Vallaeys T, Mergeay M, Coves J (2005) A probable link between the DedA protein and resistance to selenite. Res Microbiol 156:367–374PubMedCrossRefGoogle Scholar
  24. Legatzki A, Grass G, Anton A, Rensing C, Nies DH (2003) Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans. J Bacteriol 185:4354–4361PubMedCrossRefGoogle Scholar
  25. Mergeay M, Houba C, Gerits J (1978) Extrachromosomal inheritance controlling resistance to cadmium, cobalt, copper and zinc ions: evidence from curing in a Pseudomonas. Arch Int Physiol Biochim 86:440–442PubMedGoogle Scholar
  26. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334PubMedGoogle Scholar
  27. Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, van der Lelie D, Wattiez R (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27:385–410PubMedCrossRefGoogle Scholar
  28. Mergeay M, Monchy S, Janssen P, Van Houdt R, Leys N (2009) Megaplasmids in Cupriavidus Genus and Metal Resistance In: Schwartz E (ed) Microbial Megaplasmids, vol 11. vol Microbiology Monographs. Springer, Berlin, pp 209–238Google Scholar
  29. Monchy S, Benotmane MA, Wattiez R, van Aelst S, Auquier V, Borremans B, Mergeay M, Taghavi S, van der Lelie D, Vallaeys T (2006) Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology 152:1765–1776PubMedCrossRefGoogle Scholar
  30. Monchy S, Benotmane MA, Janssen P, Vallaeys T, Taghavi S, van der Lelie D, Mergeay M (2007) Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 189:7417–7425PubMedCrossRefGoogle Scholar
  31. Moore CM, Helmann JD (2005) Metal ion homeostasis in Bacillus subtilis. Curr Opin Microbiol 8:188–195PubMedCrossRefGoogle Scholar
  32. Munkelt D, Grass G, Nies DH (2004) The chromosomally encoded cation diffusion facilitator proteins DmeF and FieF from Wautersia metallidurans CH34 are transporters of broad metal specificity. J Bacteriol 186:8036–8043PubMedCrossRefGoogle Scholar
  33. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750PubMedCrossRefGoogle Scholar
  34. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339PubMedCrossRefGoogle Scholar
  35. Nies DH, Silver S (1989) Metal ion uptake by a plasmid-free metal-sensitive Alcaligenes eutrophus strain. J Bacteriol 171:4073–4075PubMedGoogle Scholar
  36. Nies DH, Nies A, Chu L, Silver S (1989) Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc Natl Acad Sci USA 86:7351–7355PubMedCrossRefGoogle Scholar
  37. Nies DH, Rehbein G, Hoffmann T, Baumann C, Grosse C (2006) Paralogs of genes encoding metal resistance proteins in Cupriavidus metallidurans strain CH34. J Mol Microbiol Biotechnol 11:82–93PubMedCrossRefGoogle Scholar
  38. Noel-Georis I, Vallaeys T, Chauvaux R, Monchy S, Falmagne P, Mergeay M, Wattiez R (2004) Global analysis of the Ralstonia metallidurans proteome: prelude for the large-scale study of heavy metal response. Proteomics 4:151–179PubMedCrossRefGoogle Scholar
  39. Petit-Haertlein I, Girard E, Sarret G, Hazemann JL, Gourhant P, Kahn R, Coves J (2010) Evidence for conformational changes upon copper binding to Cupriavidus metallidurans CzcE. Biochemistry 49:1913–1922PubMedCrossRefGoogle Scholar
  40. Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci USA 103:2075–2080PubMedCrossRefGoogle Scholar
  41. Reith F, Etschmann B, Grosse C, Moors H, Benotmane MA, Monsieurs P, Grass G, Doonan C, Vogt S, Lai B, Martinez-Criado G, George GN, Nies DH, Mergeay M, Pring A, Southam G, Brugger J (2009) Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc Natl Acad Sci USA 106:17757–17762PubMedCrossRefGoogle Scholar
  42. Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A, Smyth GK (2007) A comparison of background correction methods for two-colour microarrays. Bioinformatics 23:2700–2707PubMedCrossRefGoogle Scholar
  43. Sarret G, Favier A, Coves J, Hazemann JL, Mergeay M, Bersch B (2010) CopK from Cupriavidus metallidurans CH34 binds Cu(I) in a tetrathioether site: characterization by X-ray absorption and NMR spectroscopy. J Am Chem Soc 132:3770–3777PubMedCrossRefGoogle Scholar
  44. Scherer J, Nies DH (2009) CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Mol Microbiol 73:601–621PubMedCrossRefGoogle Scholar
  45. Schmidt T, Schlegel HG (1994) Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J Bacteriol 176:7045–7054PubMedGoogle Scholar
  46. Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Ragg T (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3PubMedCrossRefGoogle Scholar
  47. Sendra V, Cannella D, Bersch B, Fieschi F, Menage S, Lascoux D, Coves J (2006) CopH from Cupriavidus metallidurans CH34. A novel periplasmic copper-binding protein. Biochemistry 45:5557–5566PubMedCrossRefGoogle Scholar
  48. Sendra V, Gambarelli S, Bersch B, Coves J (2009) Site-directed mutagenesis reveals a conservation of the copper-binding site and the crucial role of His24 in CopH from Cupriavidus metallidurans CH34. J Inorg Biochem 103:1721–1728PubMedCrossRefGoogle Scholar
  49. Serres MH, Riley M (2000) MultiFun, a multifunctional classification scheme for Escherichia coli K-12 gene products. Microb Comp Genomics 5:205–222PubMedGoogle Scholar
  50. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article3Google Scholar
  51. Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey VJ, Dudoit S, Irizarry RA, Huber R (eds) Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York, pp 397–420CrossRefGoogle Scholar
  52. Smyth GK, Speed T (2003) Normalization of cDNA microarray data. Methods 31:265–273PubMedCrossRefGoogle Scholar
  53. Taghavi S, Mergeay M, van der Lelie D (1997) Genetic and physical maps of the Alcaligenes eutrophus CH34 megaplasmid pMOL28 and its derivative pMOL50 obtained after temperature-induced mutagenesis and mortality. Plasmid 37:22–34PubMedCrossRefGoogle Scholar
  54. Taghavi S, Lesaulnier C, Monchy S, Wattiez R, Mergeay M, van der Lelie D (2008) Lead(II) resistance in Cupriavidus metallidurans CH34: interplay between plasmid and chromosomally-located functions. Antonie Van Leeuwenhoek 96:171–182PubMedCrossRefGoogle Scholar
  55. Tibazarwa C, Wuertz S, Mergeay M, Wyns L, van Der Lelie D (2000) Regulation of the cnr cobalt and nickel resistance determinant of Ralstonia eutropha (Alcaligenes eutrophus) CH34. J Bacteriol 182:1399–1409PubMedCrossRefGoogle Scholar
  56. Vallenet D, Labarre L, Rouy Z, Barbe V, Bocs S, Cruveiller S, Lajus A, Pascal G, Scarpelli C, Medigue C (2006) MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res 34:53–65PubMedCrossRefGoogle Scholar
  57. Van der Auwera GA, Krol JE, Suzuki H, Foster B, Van Houdt R, Brown CJ, Mergeay M, Top EM (2009) Plasmids captured in C. metallidurans CH34: defining the PromA family of broad-host-range plasmids. Antonie Van Leeuwenhoek 96:193–204PubMedCrossRefGoogle Scholar
  58. van der Lelie D, Schwuchow T, Schwidetzky U, Wuertz S, Baeyens W, Mergeay M, Nies DH (1997) Two-component regulatory system involved in transcriptional control of heavy-metal homoeostasis in Alcaligenes eutrophus. Mol Microbiol 23:493–503PubMedCrossRefGoogle Scholar
  59. Van Houdt R, Monchy S, Leys N, Mergeay M (2009) New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria. Antonie Van Leeuwenhoek. 96:205–226PubMedCrossRefGoogle Scholar
  60. von Rozycki T, Nies DH (2009) Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Antonie Van Leeuwenhoek 96:115–139CrossRefGoogle Scholar
  61. Waldron KJ, Robinson NJ (2009) How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol 7:25–35PubMedCrossRefGoogle Scholar
  62. Yuan C, Lu X, Qin J, Rosen BP, Le XC (2008) Volatile arsenic species released from Escherichia coli expressing the AsIII S-adenosylmethionine methyltransferase gene. Environ Sci Technol 42:3201–3206PubMedCrossRefGoogle Scholar
  63. Zhang YB, Monchy S, Greenberg B, Mergeay M, Gang O, Taghavi S, van der Lelie D (2009) ArsR arsenic-resistance regulatory protein from Cupriavidus metallidurans CH34. Antonie Van Leeuwenhoek 96:161–170PubMedCrossRefGoogle Scholar
  64. Zoropogui A, Gambarelli S, Coves J (2008) CzcE from Cupriavidus metallidurans CH34 is a copper-binding protein. Biochem Biophys Res Commun 365:735–739PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Pieter Monsieurs
    • 1
  • Hugo Moors
    • 1
  • Rob Van Houdt
    • 1
  • Paul J. Janssen
    • 1
  • Ann Janssen
    • 1
  • Ilse Coninx
    • 1
  • Max Mergeay
    • 1
  • Natalie Leys
    • 1
  1. 1.Molecular and Cellular BiologyBelgian Nuclear Research Centre (SCK·CEN)Boeretang 200Belgium

Personalised recommendations