, Volume 24, Issue 6, pp 1093–1098

Metal chelation therapy in rheumathoid arthritis: a case report

Successful management of rheumathoid arthritis by metal chelation therapy
  • Fabrizia Bamonti
  • Alessandro Fulgenzi
  • Cristina Novembrino
  • Maria Elena Ferrero


Toxic metals are involved in the pathogenesis of some neurodegenerative and vascular diseases and are known to impair the immune system functions. We report here the case of a patient affected by heavy metal intoxication, who had developed an autoimmune disease. There was evidence of aluminium, cadmium and lead intoxication in a 63-year old Italian woman affected by rheumatoid arthritis (RA). We treated the patient with calcium disodium edetate (EDTA) once a week for a year in order to remove traces of heavy metal intoxication. Oxidative status profile was carried out at the beginning and after 6 months’ EDTA chelation. At the end of the treatment, the patient did not show any signs of metal intoxication, RA symptoms and oxidative status improved.


Chelation therapy Rheumathoid arthritis EDTA Metal intoxication 



Calcium disodium edetate


Reactive oxygen species


Reduced form of glutathione


Oxidized form of glutathione


Total antioxidant capacity


  1. Campise M, Bamonti F, Novembrino C, Ippolito S, Tarantino A, Cornelli U, Lonati S, Cesana BM, Ponticelli C (2003) Oxidative stress in kidney transplant patients. Transplantation 76(10):1474–1478. doi:10.1097/01.TP.0000090344.61975.F0 PubMedCrossRefGoogle Scholar
  2. Corsello S, Fulgenzi A, Vietti D, Ferrero ME (2009) The usefulness of chelation therapy for the remission of symptoms caused by previous treatment with mercury-containing pharmaceuticals: a case report. Cases J 2:199. doi:10.1186/1757-1626-2-199 PubMedCrossRefGoogle Scholar
  3. Dietert RR (2009) Developmental immunotoxicology: focus on health risks. Chem Res Toxicol 22(1):17–23. doi:10.1021/tx800198m PubMedCrossRefGoogle Scholar
  4. Flora SJ, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res 128(4):501–523PubMedGoogle Scholar
  5. Fortier M, Omara F, Bernier J, Brousseau P, Fournier M (2008) Effects of physiological concentrations of heavy metals both individually and in mixtures on the viability and function of peripheral blood human leukocytes in vitro. J Toxicol Environ Health A 71(19):1327–1337. doi:10.1080/15287390802240918 PubMedCrossRefGoogle Scholar
  6. Hanson ML, Brundage KM, Schafer R, Tou JC, Barnett JB (2010) Prenatal cadmium exposure dysregulates sonic hedgehog and Wnt/beta-catenin signaling in the thymus resulting in altered thymocyte development. Toxicol Appl Pharmacol 242(2):136–145. doi:10.1016/j.taap.2009.09.023 PubMedCrossRefGoogle Scholar
  7. Hemdan NY, Emmrich F, Adham K, Wichmann G, Lehmann I, El-Massry A, Ghoneim H, Lehmann J, Sack U (2005) Dose-dependent modulation of the in vitro cytokine production of human immune competent cells by lead salts. Toxicol Sci 86(1):75–83. doi:10.1093/toxsci/kfi177 PubMedCrossRefGoogle Scholar
  8. Holladay SD (1999) Prenatal immunotoxicant exposure and postnatal autoimmune disease. Environ Health Perspect 107(Suppl 5):687–691. doi:10.1177/0961203309345724 PubMedCrossRefGoogle Scholar
  9. Israeli E, Agmon-Levin N, Blank M, Shoenfeld Y (2009) Adjuvants and autoimmunity. Lupus 18(13):1217–1225. doi:10.1177/0961203309345724 PubMedCrossRefGoogle Scholar
  10. Kaizer RR, Gutierres JM, Schmatz R, Spanevello RM, Morsch VM, Schetinger MR, Rocha JB (2010) In vitro and in vivo interactions of aluminum on NTPDase and AChE activities in lymphocytes of rats. Cell Immunol 265(2):133–138. doi:10.1016/j.cellimm.2010.08.001 PubMedCrossRefGoogle Scholar
  11. Kumar V, Gill KD (2009) Aluminium neurotoxicity: neurobehavioural and oxidative aspects. Arch Toxicol 83(11):965–978. doi:10.1007/s00204-009-0455-6 PubMedCrossRefGoogle Scholar
  12. Marrack P, McKee AS, Munks MW (2009) Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol 9(4):287–293. doi:10.1038/nri2510 PubMedCrossRefGoogle Scholar
  13. Mishra KP (2009) Lead exposure and its impact on immune system: a review. Toxicol In Vitro 23(6):969–972. doi:10.1016/j.tiv.2009.06.014 PubMedCrossRefGoogle Scholar
  14. Mishra KP, Singh VK, Rani R, Yadav VS, Chandran V, Srivastava SP, Seth PK (2003) Effect of lead exposure on the immune response of some occupationally exposed individuals. Toxicology 188(2–3):251–259PubMedCrossRefGoogle Scholar
  15. Pilones K, Lai ZW, Gavalchin J (2007) Prenatal HgCl(2) Exposure Alters Fetal Cell Phenotypes. J Immunotoxicol 4(4):295–301. doi:10.1080/15476910701680178 PubMedCrossRefGoogle Scholar
  16. Pineda-Zavaleta AP, Garcia-Vargas G, Borja-Aburto VH, Acosta-Saavedra LC, Vera Aguilar E, Gomez-Munoz A, Cebrian ME, Calderon-Aranda ES (2004) Nitric oxide and superoxide anion production in monocytes from children exposed to arsenic and lead in region Lagunera, Mexico. Toxicol Appl Pharmacol 198(3):283–290. doi:10.1016/j.taap.2003.10.034 PubMedCrossRefGoogle Scholar
  17. Prozialeck WC, Edwards JR, Nebert DW, Woods JM, Barchowsky A, Atchison WD (2008) The vascular system as a target of metal toxicity. Toxicol Sci 102(2):207–218. doi:10.1093/toxsci/kfm263 PubMedCrossRefGoogle Scholar
  18. Roussel AM, Hininger-Favier I, Waters RS, Osman M, Fernholz K, Anderson RA (2009) EDTA chelation therapy, without added vitamin C, decreases oxidative DNA damage and lipid peroxidation. Altern Med Rev 14(1):56–61PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Fabrizia Bamonti
    • 1
  • Alessandro Fulgenzi
    • 2
  • Cristina Novembrino
    • 1
  • Maria Elena Ferrero
    • 2
  1. 1.Dipartimento di Scienze MedicheUniversità di Milano, Fondazione IRCCS Ospedale Policlinico, Mangiagalli, Regina ElenaMilanItaly
  2. 2.Dipartimento di Morfologia Umana e Scienze Biomediche Città StudiUniversità di MilanoMilanItaly

Personalised recommendations