BioMetals

, Volume 24, Issue 6, pp 1079–1092

Physiological relevance and contribution to metal balance of specific and non-specific Metallothionein isoforms in the garden snail, Cantareus aspersus

  • Martina Höckner
  • Karin Stefanon
  • Annette de Vaufleury
  • Freddy Monteiro
  • Sílvia Pérez-Rafael
  • Òscar Palacios
  • Mercè Capdevila
  • Sílvia Atrian
  • Reinhard Dallinger
Article

Abstract

Variable environmental availability of metal ions represents a constant challenge for most organisms, so that during evolution, they have optimised physiological and molecular mechanisms to cope with this particular requirement. Metallothioneins (MTs) are proteins that play a major role in metal homeostasis and as a reservoir. The MT gene/protein systems of terrestrial helicid snails are an invaluable model for the study of metal-binding features and MT isoform-specific functionality of these proteins. In the present study, we characterised three paralogous MT isogenes and their expressed products in the escargot (Cantareus aspersus). The metal-dependent transcriptional activation of the three isogenes was assessed using quantitative Real Time PCR. The metal-binding capacities of the three isoforms were studied by characterising the purified native complexes. All the data were analysed in relation to the trace element status of the animals after metal feeding. Two of the three C.aspersus MT (CaMT) isoforms appeared to be metal-specific, (CaCdMT and CaCuMT, for cadmium and copper respectively). A third isoform (CaCd/CuMT) was non-specific, since it was natively recovered as a mixed Cd/Cu complex. A specific role in Cd detoxification for CaCdMT was revealed, with a 80–90% contribution to the Cd balance in snails exposed to this metal. Conclusive data were also obtained for the CaCuMT isoform, which is involved in Cu homeostasis, sharing about 30–50% of the Cu balance of C. aspersus. No apparent metal-related physiological function was found for the third isoform (CaCd/CuMT), so its contribution to the metal balance of the escargot may be, if at all, of only marginal significance, but may enclose a major interest in evolutionary studies.

Keywords

Cadmium Copper Zinc Metallothionein Mollusca Pulmonata 

Abbreviations

AAS

Atomic absorption spectrophotometry

CaMT

C. aspersus MT (global denomination)

CaCdMT

Cd-specific C. aspersus MT isoform

CaCuMT

Cu-specific C. aspersus MT isoform

CaCd/CuMT

Mixed metal C. aspersus MT isoform

ESI-MS

Electrospray ionization mass spectrometry

ESI-TOF MS

Time-of-flight electrospray ionization mass spectrometry

References

  1. Berger B, Hunziker PE, Hauer CR, Birchler N, Dallinger R (1995) Mass spectrometry and amino acid sequence of two cadmium-binding metallothionein isoforms from the terrestrial gastropod Arianta arbustorum. Biochem J 311:951–957PubMedGoogle Scholar
  2. Berger B, Dallinger R, Gehrig P, Hunziker PE (1997) Primary structure of a copper-binding metallothionein isoform from mantle tissue of the terrestrial gastropod Helix pomatia L. Biochem J 328:219–224PubMedGoogle Scholar
  3. Blindauer CA, Leszczyszyn OI (2010) Metallothioneins: unparalleled diversity in structures and functions for metal ion homeostasis and more. Nat Prod Rep 27:720–741PubMedCrossRefGoogle Scholar
  4. Bofill R, Capdevila M, Atrian S (2009) Independent metal-binding features of recombinant metallothioneins convergently draw a step gradation between Zn- and Cu-thioneins. Metallomics 1:229–234PubMedCrossRefGoogle Scholar
  5. Capdevila M, Domenech J, Pagani A, Tio L, Villarreal L, Atrian S (2005) Zn- and Cd-metallothionein recombinant species from the most diverse phyla contain sulfide (S2−) ligands. Angew Chem Int Ed Eng 44:4618–4622CrossRefGoogle Scholar
  6. Chabicovsky M, Niederstaetter H, Thaler R, Hödl E, Parson W, Rossmanith W, Dallinger R (2003) Localisation and quantification of Cd- and Cu-specific metallothionein isoform mRNA in cells and organs of the terrestrial gastropod Helix pomatia. Toxicol Appl Pharmacol 190:25–36PubMedCrossRefGoogle Scholar
  7. Chevallier H (1983) Recherches appliquées pour l’ élevage des escargots du genre Helix. J Moll Stud 49:27–30Google Scholar
  8. Dallinger R, Wieser W (1984) Patterns of accumulation, distribution and liberation of Zn, Cu, Cd and Pb in different organs of the land snail Helix pomatia L. Comp Biochem Physiol 79C:117–124Google Scholar
  9. Dallinger R, Berger B, Bauer-Hilty A (1989) Purification of cadmium-binding proteins from related species of terrestrial Helicidae (Gastropoda, Mollusca): a comparative study. Mol Cell Biochem 85:135–145PubMedCrossRefGoogle Scholar
  10. Dallinger R, Berger B, Hunziker P, Birchler N, Hauer C, Kägi JHR (1993) Purification and primary structure of snail metallothionein: similarity of the N-terminal sequence with histones H4 and H2A. Eur J Biochem 216:739–746PubMedCrossRefGoogle Scholar
  11. Dallinger R, Berger B, Hunziker PE, Kägi JHR (1997) Metallothionein in snail Cd and Cu metabolism. Nature (London) 388:237–238CrossRefGoogle Scholar
  12. Dallinger R, Berger B, Triebskorn R, Köhler HR (2001) Soil biology and ecotoxicology. In: Barker G (ed) Biology of terrestrial molluscs. CAB International, Wallingford, England, pp 489–525CrossRefGoogle Scholar
  13. Dallinger R, Chabicovsky M, Berger B (2004) Isoform-specific quantification of metallothionein in the terrestrial gastropod Helix pomatia I. Molecular, biochemical, and methodical background. Environ Toxicol Chem 23:890–901PubMedCrossRefGoogle Scholar
  14. Dallinger R, Chabicovsky M, Hödl E, Prem C, Hunziker P, Manzl C (2005) Copper in Helix pomatia (Gastropoda) is regulated by one single cell type: differently responsive metal pools in rhogocytes. Am J Physiol 189:R1185–R1195Google Scholar
  15. Egg M, Höckner M, Chabicovsky M, Brandstätter A, Schuler D, Dallinger R (2009) Structural and bioinformatic analysis of the Roman snail Cd-Metallothionein gene uncovers molecular adaptation towards plasticity in coping with multifarious environmental stress. Mol Ecol 18:2426–2443PubMedCrossRefGoogle Scholar
  16. Fabris D, Zaia J, Hathout Y, Fenselau C (1996) Retention of thiol protons in two classes of protein zinc coordination centers. J Am Chem Soc 118:12242–12243CrossRefGoogle Scholar
  17. Gehrig P, You C, Dallinger R, Gruber C, Brouwer M, Kägi JHR, Hunziker PE (2000) Electrospray ionization mass spectrometry of zinc, cadmium and copper metallothioneins: evidence for metal binding cooperativity. Prot Sci 9:395–402CrossRefGoogle Scholar
  18. George SG, Todd K, Wright J (1996) Regulation of metallothionein in teleosts: induction of MTmRNA and protein by cadmium in hepatic and extrahepatic tissues of a marine flatfish, the turbot (Scophthalmus maximus). Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 113:109–115PubMedCrossRefGoogle Scholar
  19. Godan D (1979) Schadschnecken und ihre Bekämpfung. Ulmer, Stuttgart (Germany)Google Scholar
  20. Guiller A, Madec L (2010) Historical biogeography of the land snail Cornu aspersum: a new scenario inferred from haplotype distribution in the Western Mediterranean basin. BMC Evol Biol 10:18PubMedCrossRefGoogle Scholar
  21. Hispard F, Schuler D, de Vaufleury A, Scheifler R, Badot PM, Dallinger R (2008) Metal distribution and metallothionein induction after cadmium exposure in the terrestrial snail Helix aspersa (Gastropoda, Pulmonata). Environ Toxicol Chem 27:1533–1542PubMedCrossRefGoogle Scholar
  22. Höckner M, Stefanon K, Schuler D, Fantur R, de Vaufleury A, Dallinger R (2009) Coping with cadmium exposure in various ways: the two helicid snails Helix pomatia and Cantareus aspersus share the metal transcription factor-2, but differ in promoter organization and transcription of their Cd-metallothionein genes. J Exp Zool A Ecol Genet Physiol 311:776–787PubMedCrossRefGoogle Scholar
  23. Kägi JHR, Kojima Y (1987) Chemistry and biochemistry of metallothionein. In: Kägi JHR, Kojima Y (eds) Metallothionein II. Exp Suppl 52. Birkhäuser Verlag, Basel, pp 25–61Google Scholar
  24. Kerney MP, Cameron RAD (1979) A field guide of the land snails of Britain and North-west Europe. Wm. Collins & Sons, GlasgowGoogle Scholar
  25. Krezoski SK, Villalobos J, Shaw CF, Petering DH (1988) Kinetic lability of zinc bound to metallothionein in Ehrlich cells. Biochem J 255:482–491Google Scholar
  26. Manzl C, Krumschnabel G, Schwarzbaum PJ, Dallinger R (2004) Acute toxicity of cadmium and copper in hepatopancreas cells from the Roman snail (Helix pomatia). Comp Biochem Physiol C 138:45–52CrossRefGoogle Scholar
  27. Orihuela R, Monteiro F, Pagani A, Capdevila M, Atrian S (2010) Evidence of native metal-(S2−)-MT complexes confirmed by the analysis of Cup1 divalent metal ion binding properties. Chem A Eur J 16:2363–12372CrossRefGoogle Scholar
  28. Overnell J, Trewhella E (1979) Evidence for the natural occurrence of (cadmium, copper)-metallothionein in the crab Cancer pagurus. Comp Biochem Physiol 64C:69–76Google Scholar
  29. Palacios O, Pagani A, Pérez-Rafael S, Egg M, Höckner M, Brandstätter A, Capdevila M, Atrian S, Dallinger R (2011) Shaping mechanisms of metal specificity in a family of metazoan metallothioneins: evolutionary differentiation of Mollusc MTs. BMC Biol 9:4PubMedCrossRefGoogle Scholar
  30. Schuler D, Dallinger R, Hispard F, De Vaufleury A (2008) Biochemical characterization of metallothionein isoforms in terrestrial snails: relationship between amino acid sequence and metal binding specificity. Comp Biochem Physiol 151A:S20Google Scholar
  31. Sigel A, Sigel H, Sigel RKO (eds) (2009) Metal ions in life sciences; vol 5: metallothioneins and related chelators. Royal Society of Chemistry, Cambridge, UKGoogle Scholar
  32. Swerdel MR, Cousins RJ (1982) Induction of kidney metallothionein and metallothionein messenger RNA by zinc and cadmium. J Nutr 112:801–809PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Martina Höckner
    • 1
  • Karin Stefanon
    • 1
  • Annette de Vaufleury
    • 2
  • Freddy Monteiro
    • 3
  • Sílvia Pérez-Rafael
    • 4
  • Òscar Palacios
    • 4
  • Mercè Capdevila
    • 4
  • Sílvia Atrian
    • 3
  • Reinhard Dallinger
    • 1
  1. 1.Institute of ZoologyUniversity of InnsbruckInnsbruckAustria
  2. 2.Department of Chrono-EnvironmentUniversity of Franche-ComtéBesançon CedexFrance
  3. 3.Departament de Genètica, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
  4. 4.Departament de Química, Facultat de CiènciesUniversitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations