, Volume 24, Issue 6, pp 1059–1067 | Cite as

Pseudomonas siderophores in the sputum of patients with cystic fibrosis

  • Lois W. Martin
  • David W. Reid
  • Katrina J. Sharples
  • Iain L. Lamont


The lungs of patients with cystic fibrosis become chronically infected with the bacterium Pseudomonas aeruginosa, which heralds progressive lung damage and a decline in health. Iron is a crucial micronutrient for bacteria and its acquisition is a key factor in infection. P. aeruginosa can acquire this element by secreting pyoverdine and pyochelin, iron-chelating compounds (siderophores) that scavenge iron and deliver it to the bacteria. Siderophore-mediated iron uptake is generally considered a key factor in the ability of P. aeruginosa to cause infection. We have investigated the amounts of pyoverdine in 148 sputum samples from 36 cystic fibrosis patients (30 infected with P. aeruginosa and 6 as negative controls). Pyoverdine was present in 93 samples in concentrations between 0.30 and 51 μM (median 4.6 μM) and there was a strong association between the amount of pyoverdine and the number of P. aeruginosa present. However, pyoverdine was not present, or below the limits of detection (~0.3 μM), in 21 sputum samples that contained P. aeruginosa. Pyochelin was also absent, or below the limits of detection (~1 μM), in samples from P. aeruginosa-infected patients with little or no detectable pyoverdine. Our data show that pyoverdine is an important iron-scavenging molecule for P. aeruginosa in many cystic fibrosis patients, but other P. aeruginosa iron-uptake systems must be active in some patients to satisfy the bacterial need for iron.


Pyoverdine Pyochelin Iron and infection Pseudomonas aeruginosa Cystic fibrosis 



Cystic fibrosis


  1. Braud A, Hannauer M, Mislin GL, Schalk IJ (2009) The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity. J Bacteriol 191:3517–3525PubMedCrossRefGoogle Scholar
  2. Brown MRW, Anwar H, Lambert PA (1984) Evidence that mucoid Pseudomonas aeruginosa in the cystic fibrosis lung grows under iron-restricted conditions. FEMS Microbiol Lett 21:113–117CrossRefGoogle Scholar
  3. Buckling A, Harrison F, Vos M, Brockhurst MA, Gardner A, West SA, Griffin A (2007) Siderophore-mediated cooperation and virulence in Pseudomonas aeruginosa. FEMS Microbiol Ecol 62:135–141PubMedCrossRefGoogle Scholar
  4. Budzikiewicz H (2004) Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-fluorescent Pseudomonas spp.). Fortschr Chem Org Naturst 87:81–237PubMedGoogle Scholar
  5. Burns JL, Gibson RL, McNamara S, Yim D, Emerson J, Rosenfeld M, Hiatt P, McCoy K, Castile R, Smith AL, Ramsey BW (2001) Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J Infect Dis 183:444–452PubMedCrossRefGoogle Scholar
  6. Cornelis P, Matthijs S (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4:787–798PubMedCrossRefGoogle Scholar
  7. Cox CD, Graham R (1979) Isolation of an iron-binding compound from Pseudomonas aeruginosa. J Bacteriol 137:357–364PubMedGoogle Scholar
  8. Davies JC, Alton EW, Bush A (2007) Cystic fibrosis. BMJ 335:1255–1259PubMedCrossRefGoogle Scholar
  9. De Vos D, De Chial M, Cochez C, Jansen S, Tummler B, Meyer JM, Cornelis P (2001) Study of pyoverdine type and production by Pseudomonas aeruginosa isolated from cystic fibrosis patients: prevalence of type II pyoverdine isolates and accumulation of pyoverdine-negative mutations. Arch Microbiol 175:384–388PubMedCrossRefGoogle Scholar
  10. del Olmo A, Caramelo C, SanJose C (2003) Fluorescent complex of pyoverdin with aluminum. J Inorg Biochem 97:384–387PubMedCrossRefGoogle Scholar
  11. Emerson J, Rosenfeld M, McNamara S, Ramsey B, Gibson RL (2002) Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol 34:91–100PubMedCrossRefGoogle Scholar
  12. Haas B, Kraut J, Marks J, Zanker SC, Castignetti D (1991) Siderophore presence in sputa of cystic fibrosis patients. Infect Immun 59:3997–4000PubMedGoogle Scholar
  13. Harris JK, De Groote MA, Sagel SD, Zemanick ET, Kapsner R, Penvari C, Kaess H, Deterding RR, Accurso FJ, Pace NR (2007) Molecular identification of bacteria in bronchoalveolar lavage fluid from children with cystic fibrosis. Proc Natl Acad Sci USA 104:20529–20533PubMedCrossRefGoogle Scholar
  14. Harrison F (2007) Microbial ecology of the cystic fibrosis lung. Microbiology 153:917–923PubMedCrossRefGoogle Scholar
  15. Harrison F, Browning LE, Vos M, Buckling A (2006) Cooperation and virulence in acute Pseudomonas aeruginosa infections. BMC Biol 4:21PubMedCrossRefGoogle Scholar
  16. Hoegy F, Celia H, Mislin GL, Vincent M, Gallay J, Schalk IJ (2005) Binding of iron-free siderophore, a common feature of siderophore outer membrane transporters of Escherichia coli and Pseudomonas aeruginosa. J Biol Chem 280:20222–20230PubMedCrossRefGoogle Scholar
  17. Hunt TA, Peng WT, Loubens I, Storey DG (2002) The Pseudomonas aeruginosa alternative sigma factor PvdS controls exotoxin A expression and is expressed in lung infections associated with cystic fibrosis. Microbiology 148:3183–3193PubMedGoogle Scholar
  18. King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J of Lab Medicine 44:301–307Google Scholar
  19. Konstan MW, Morgan WJ, Butler SM, Pasta DJ, Craib ML, Silva SJ, Stokes DC, Wohl ME, Wagener JS, Regelmann WE, Johnson CA (2007) Risk factors for rate of decline in forced expiratory volume in one second in children and adolescents with cystic fibrosis. J Pediatr 151:134–139PubMedCrossRefGoogle Scholar
  20. Lamont IL, Konings AF, Reid DW (2009) Iron acquisition by Pseudomonas aeruginosa in the lungs of patients with cystic fibrosis. Biometals 22:53–60PubMedCrossRefGoogle Scholar
  21. Liang C-Y, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22CrossRefGoogle Scholar
  22. Meyer J-M, Abdallah MA (1978) The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. J Gen Microbiol 107:319–328Google Scholar
  23. Meyer JM, Neely A, Stintzi A, Georges C, Holder IA (1996) Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect Immun 64:518–523PubMedGoogle Scholar
  24. Meyer J-M, Stintzi A, Vos DD, Cornelis P, Tappe R, Taraz K, Budzikiewicz H (1997) Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. Microbiology 143:35–43PubMedCrossRefGoogle Scholar
  25. Moreau-Marquis S, Bomberger JM, Anderson GG, Swiatecka-Urban A, Ye S, O’Toole GA, Stanton BA (2008) The ΔF508-CFTR mutation results in increased biofilms formation by Pseudomonas aeruginosa by increasing iron bioavailability. Am J Physiol Lung Cell Mol Physiol 295:L25–L37PubMedCrossRefGoogle Scholar
  26. Mureseanu M, Renard G, Galarneau A, Lerner DA (2003) A demonstration model for a selective and recyclable uptake of metals from water: Fe(III) ions complexation and release by a supported natural fluorescent chelator. Talanta 60:515–522PubMedCrossRefGoogle Scholar
  27. Ochsner A, Johnson Z, Vasil ML (2000) Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. Microbiology 146:185–198PubMedGoogle Scholar
  28. Poole K, McKay GA (2003) Iron acquisition and its control in Pseudomonas aeruginosa: many roads lead to Rome. Front Biosci 8:d661–d686PubMedCrossRefGoogle Scholar
  29. Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941PubMedCrossRefGoogle Scholar
  30. Reid DW, Carroll V, O’May C, Champion A, Kirov SM (2007) Increased airway iron as a potential factor in the persistence of Pseudomonas aeruginosa infection in cystic fibrosis. Eur Respir J 30:286–292PubMedCrossRefGoogle Scholar
  31. Reid DW, Anderson GJ, Lamont IL (2008) Cystic fibrosis: ironing out the problem of infection? Am J Physiol Lung Cell Mol Physiol 295:L23–L24PubMedCrossRefGoogle Scholar
  32. Reid DW, Anderson GJ, Lamont IL (2009) The role of lung iron in determining the bacterial and host struggle in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 295(5):795–802CrossRefGoogle Scholar
  33. Rogers GB, Hoffman LR, Whiteley M, Daniels TW, Carroll MP, Bruce KD (2010) Revealing the dynamics of polymicrobial infections: implications for antibiotic therapy. Trends Microbiol 18:357–364PubMedCrossRefGoogle Scholar
  34. Schalk IJ, Abdallah MA, Pattus F (2002) Recycling of pyoverdin on the FpvA receptor after ferric pyoverdin uptake and dissociation in Pseudomonas aeruginosa. Biochemistry 41:1663–1671PubMedCrossRefGoogle Scholar
  35. Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D’Argenio DA, Miller SI, Ramsey BW, Speert DP, Moskowitz SM, Burns JL, Kaul R, Olson MV (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA 103(22):8487–8492PubMedCrossRefGoogle Scholar
  36. Son MS, Matthews WJ Jr, Kang Y, Nguyen DT, Hoang TT (2007) In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients. Infect Immun 75:5313–5324PubMedCrossRefGoogle Scholar
  37. Sriyosachati S, Cox CD (1986) Siderophore-mediated iron acquisition from transferrin by Pseudomonas aeruginosa. Infect Immun 52:885–891PubMedGoogle Scholar
  38. StataCorp (2009) Stata statistical software: release 11. StataCorp LP, College StationGoogle Scholar
  39. Stites SW, Walters B, O’Brien-Ladner AR, Bailey K, Wesselius LJ (1998) Increased iron and ferritin content of sputum from patients with cystic fibrosis or chronic bronchitis. Chest 114:814–819PubMedCrossRefGoogle Scholar
  40. Stites SW, Plautz MW, Bailey K, O’Brien-Ladner AR, Wesselius LJ (1999) Increased concentrations of iron and isoferritins in the lower respiratory tract of patients with stable cystic fibrosis. Am J Respir Crit Care Med 160:796–801PubMedGoogle Scholar
  41. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FSL, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK-S, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock REW, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964PubMedCrossRefGoogle Scholar
  42. Takase H, Nitanai H, Hoshino K, Otani T (2000) Impact of siderophore production on Pseudomonas aeruginosa infections in immunocompromised mice. Infect Immun 68:1834–1839PubMedCrossRefGoogle Scholar
  43. Upritchard HG, Cordwell SJ, Lamont IL (2008) Immunoproteomics to examine cystic fibrosis host interactions with extracellular Pseudomonas aeruginosa proteins. Infect Immun 76:4624–4632PubMedCrossRefGoogle Scholar
  44. Visca P (2004). Iron regulation and siderophore signalling in virulence by Pseudomonas aeruginosa, vol. 2. In: Ramos JL (ed) Pseudomonas. Kluwer Academic Press/Plenum, New York, pp 69–123Google Scholar
  45. Wehmhoner D, Haussler S, Tummler B, Jansch L, Bredenbruch F, Wehland J, Steinmetz I (2003) Inter- and intraclonal diversity of the Pseudomonas aeruginosa proteome manifests within the secretome. J Bacteriol 185:5807–5814PubMedCrossRefGoogle Scholar
  46. Weinberg ED (2009) Iron availability and infection. Biochim Biophys Acta 1790:600–605PubMedCrossRefGoogle Scholar
  47. Xiao R, Kisaalita WS (1997) Iron acquisition from transferrin and lactoferrin by Pseudomonas aeruginosa pyoverdin. Microbiology 143(Pt 7):2509–2515PubMedCrossRefGoogle Scholar
  48. Xiao R, Kisaalita WS (1998) Fluorescent pseudomonad pyoverdines bind and oxidize ferrous ion. Appl Environ Microbiol 64:1472–1476PubMedGoogle Scholar
  49. Yoder MF, Kisaalita WS (2006) Fluorescence of pyoverdin in response to iron and other common well water metals. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:369–380PubMedCrossRefGoogle Scholar
  50. Zamri A, Abdallah MA (2000a) Corrigendum to “An improved stereocontrolled synthesis of pyochelin, siderophore of Pseudomonas aeruginosa and Burkholderia cepacia”: (Tetrahedron 56 (2000) 249). Tetrahedron 56:9397CrossRefGoogle Scholar
  51. Zamri A, Abdallah MA (2000b) An improved stereocontrolled synthesis of pyochelin, siderophore of Pseudomonas aeruginosa and Burkholderia cepacia. Tetrahedron 56:249–256CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Lois W. Martin
    • 1
  • David W. Reid
    • 3
    • 4
  • Katrina J. Sharples
    • 2
  • Iain L. Lamont
    • 1
  1. 1.Department of BiochemistryUniversity of OtagoDunedinNew Zealand
  2. 2.Department of Preventive and Social MedicineUniversity of OtagoDunedinNew Zealand
  3. 3.Menzies Research Institute and University of Tasmania Medical SchoolHobartAustralia
  4. 4.Department of Thoracic MedicineThe Prince Charles HospitalChermside, BrisbaneAustralia

Personalised recommendations