BioMetals

, Volume 24, Issue 6, pp 981–992 | Cite as

Mechanisms underlying the protective effect of zinc and selenium against cadmium-induced oxidative stress in zebrafish Danio rerio

  • Mohamed Banni
  • Lina Chouchene
  • Khaled Said
  • Abdelhamid Kerkeni
  • Imed Messaoudi
Article

Abstract

The present study was designed to elucidate the protective effect mechanism of Zinc (Zn) and Selenium (Se) on cadmium (Cd)-induced oxidative stress in zebrafish. For this purpose we investigate the response of oxidative stress markers, metallothionein accumulation and gene expression in liver and ovary of female zebrafish exposed to 0,4 mg/l Cd in water and supplemented with Zn (5 mg kg−1) and/or Se (2 mg kg−1) for 21 days in their diet. Liver and ovary Cd uptake was evaluated after the exposure period. Cd exposure significantly inhibited the antioxidant enzyme activities termed as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxydase (GPx) and caused a pronounced malondialdehyde (MDA) accumulation in both organs. Co-administration of Zn and Se reversed the Cd-induced toxicity in liver and ovary measured as MDA accumulation. Interestingly, gene expression patterns of Cat, CuZnSod and Gpx were up-regulated when related enzymatic activities were altered. Zebrafish metallothionein transcripts (zMt) significantly decreased in tissues of fish supplemented with Zn and/or Se when compared to Cd-exposed fish. Our data would suggest that Zn and Se protective mechanism against Cd-induced oxidative stress is more depending on the correction of the proteins biological activities rather than on the transcriptional level of related genes.

Keywords

Oxidative stress Gene expression Cd Zn Se Zebrafish Protective effect 

References

  1. Aebi H (1974) Catalase. In: Bergmeyer H-U (ed) Methods of enzymatic analysis. Academic Press, New York, pp 671–684Google Scholar
  2. Andrews GK (2001) Cellular zinc sensors: MTF-1 regulation of gene expression. Biometals 14:223–237PubMedCrossRefGoogle Scholar
  3. Atli G, Alptekin O, Tukel S, Canli M (2006) Response of catalase activity to Ag2+ , Cd2+ , Cr2+ , Cu2+ and Zn2+ in five tissues of freshwater fish Oreochromis niloticus. Comp Biochem Physiol C 143:218–224CrossRefGoogle Scholar
  4. Banni M, Bouraoui Z, Clerandeau C, Narbonne JF, Boussetta H (2009) Mixture toxicity assessment of cadmium and benzo[a]pyrene in the sea worm Hediste diversicolor. Chemosphere 77:902–906PubMedCrossRefGoogle Scholar
  5. Banni M, Messaouidi I, Said L, El Heni J, Kerkeni A, Said K (2010) metallothionein gene expression in liver of rats exposed to cadmium and supplemented with zinc and selenium. Arch Environ Contam Toxicol. doi: 10.1007/s00244-010-9529-y
  6. Bauer R, Demeter I, Hasemann V, Johansen JT (1980) Structural properties of the zinc site in Cu, Zn-superoxide dismutase; perturbed angular correlation of gamma rays pectroscopy on the Cu, 111Cd-superoxide dismutase derivative. Biochem Biophys Res Commun 94(4):1296–1302PubMedCrossRefGoogle Scholar
  7. Bonda E, Wlostowski T, Krasowska A (2004) Testicular toxicity induced by dietary cadmium is associated with decreased testicular zinc and increased hepatic and renal metallothionein and zinc in the bank vole (Clethrionomys glareolus). Biometals 17:615–624PubMedCrossRefGoogle Scholar
  8. Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  9. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310PubMedCrossRefGoogle Scholar
  10. Canton JH, Slooff W (1982) Toxicity and accumulation studies of cadmium (Cd2+) with freshwater organisms of different trophic levels. Ecotoxicol Environ Saf 6(1):113–128PubMedCrossRefGoogle Scholar
  11. Cao L, Huang W, Liu J, Yin X, Dou S (2010) Accumulation and oxidative stress biomarkers in Japanese flounder larvae and juveniles under chronic cadmium exposure. Compar Biochem Physiol Part C 151:386–392Google Scholar
  12. Chung MJ, Walker PA, Brown RW, Hogstrand C (2005) ZINC-mediated gene expression offers protection against H2O2-induced cytotoxicity. Toxicol Appl Pharmacol 205(3):225–236PubMedCrossRefGoogle Scholar
  13. Cousins RJ, Blanchard RK, Popp MP, Liu L, Cao J, Moore B, Green CL (2003) A global view of the selectivity of zinc deprivation and excess on genes expressed in human THP-1 mononuclear cells. Proc Natl Acad Sci USA 100:6952–6957PubMedCrossRefGoogle Scholar
  14. Crouch RK, Gandy SC, Kinsey G (1981) The inhibition of islet superoxide dismutase by diabetogenic drugs. Diabetes 30:235–241PubMedGoogle Scholar
  15. Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23(5):927–940PubMedCrossRefGoogle Scholar
  16. Dalton T, Palmiter RD, Andrews GK (1994) Transcriptional induction of the mouse metallothionein-I gene in hydrogen peroxide-treated Hepa cells involves a composite major late transcription factor/antioxidant response element and metal response promoter elements. Nucleic Acid Res 22:5016–5023PubMedCrossRefGoogle Scholar
  17. Dondero F, Piacentini L, Banni M, Rebelo M, Burlando B, Viarengo A (2005) Quantitative PCR analysis of two molluscan metallothionein genes unveils differential expression and regulation. Gene 345:259–270PubMedCrossRefGoogle Scholar
  18. Egli D, Selvaraj A, Yepiskopsyan H, Zhang B, Hafen E, Georgev O, Schaffner W (2003) Knockout of dmetal-responsive transcription factorT MTF-1 in Drosophila by homologous recombination reveals its central role in heavy metal homeostasis. EMBO J 22:100–108PubMedCrossRefGoogle Scholar
  19. EPA Agency EP (2004) Ebdocrine Disruptor Screening Program. Available online: http://www.epa.gov/scipoli/oscpendo/edspoverview/index.htm
  20. Giles MA (1988) Accumulation of cadmium by rainbow trout, Salmo gairdneri, during extended exposure. Can J Fish Aquat Sci 45:1045–1053CrossRefGoogle Scholar
  21. Hafeman DG, Sunde RA, Hoekstra WG (1974) Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J Nutr 104:580–587PubMedGoogle Scholar
  22. Hamilton SJ (2003) Review of residue-based selenium toxicity thresholds for freshwater fish. Ecotoxicol Environ Saf 56:201–210PubMedCrossRefGoogle Scholar
  23. Hu Y, Jin T, Zhou T, Pang B, Wang Y (2004) Effects of zinc on gene expressions induced by cadmium in prostate and testes of rats. Biometals 17:571–572PubMedCrossRefGoogle Scholar
  24. Isani G, Andreani G, Cocchioni F, Fedeli D, Carpene E, Falcioni G (2009) Cadmium accumulation and biochemical responses in Sparus aurata following sub-lethal Cd-exposure. Ecotoxicol Environ Saf 72:224–230PubMedCrossRefGoogle Scholar
  25. Jihen EH, Imed M, Fatima H, Abdelhamid K (2009) Protective effects of selenium (Se) and zinc (Zn) on cadmium (Cd) toxicity in the liver of the rat: effects on the oxidative stress. Ecotoxicol Environ Saf 72:1559–1564CrossRefGoogle Scholar
  26. Jin Y, Zhang X, Shu L, Chen L, Sun L, Qian H, Liu W, Fu Z (2010) Oxidative stress response and gene expression with atrazine exposure in adult female zebrafish (Danio rerio). Chemosphere 78:846–852PubMedCrossRefGoogle Scholar
  27. Jurczuk M, Brzoska MM, Moniuszko-Jakoniuk J, Gaazyn-Sidorczuk M, Kulikowska-Karpinska E (2004) Antioxidant enzymes activity and lipid peroxidation in liver and kidney of rats exposed to cadmium and ethanol. Food Chem Toxicol 42(3):429–438PubMedCrossRefGoogle Scholar
  28. Köhrle J, Jakob F, Contempré B, Dumont JE (2005) Selenium, the thyroid, and the endocrine system endocrine. Endocr Rev 26:944–984PubMedCrossRefGoogle Scholar
  29. Kraemer LD, Campbell PGC, Hare L (2005) Dynamics of Cd, Cu and Zn accumulation in organs and sub-cellular fractions in field transplantated juvenile yellow perch (Perca flavescens). Environ Poll 138(2):324–337CrossRefGoogle Scholar
  30. Kucukbay Z, Yazlak H, Sahin N, Tuzcu M, Cakmak MN, Gurdogan F, Juturu V, Sahin K (2006) Zinc picolinate supplementation decreases oxidative stress in rainbow trout (Oncorhynchus mykiss). Aquaculture 257:465–469CrossRefGoogle Scholar
  31. Lamphere DN, Dorn CR, Reddy CS, Meyer AW (1984) Reduced cadmium body burden in cadmium-exposed calves fed supplemental zinc. Environ Res 33(1):119–129PubMedCrossRefGoogle Scholar
  32. Liu L, We G (2007) Growth differentiation factor 9 and its spatiotemporal expression and regulation in the zebrafish ovary. Biol Reprod 76:294–301PubMedCrossRefGoogle Scholar
  33. McCurley AT, Callard GV (2008) Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC Mol Biol 12:90–102Google Scholar
  34. Messaoudi I, El Heni J, Hammouda F, Saïd K, Kerkeni A (2009) Protective effects of selenium, zinc, or their combination on cadmium-induced oxidative stress in rat kidney. Biol Trace Elem Res 130:152–161PubMedCrossRefGoogle Scholar
  35. Messaoudi I, Hammouda F, El Heni J, Baati T, Saïd K, Kerkeni A (2010a) Reversal of cadmium induced oxidative stress in rat erythrocytes by selenium, zinc or their combination. Exp Toxicol Pathol 62(3):281–288PubMedCrossRefGoogle Scholar
  36. Messaoudi I, Banni M, Saïd L, Saïd K, Kerkeni A (2010b) Evaluation of involvement of testicular metallothionein gene expression in the protective effect of zinc against cadmium-induced testicular pathophysiology in rat. Reprod Toxicol 29(3):339–345PubMedCrossRefGoogle Scholar
  37. Monteiro DA, Rantin FT, Kalinin AL (2009) The effects of selenium on oxidative stress biomarkers in the freshwater characid fish matrinxã, Brycon cephalus (Günther, 1869) exposed to organophosphate insecticide Folisuper 600 BR® (methyl parathion). Comp Biochem Physiol C 149:40–49Google Scholar
  38. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acid Res 30:e36Google Scholar
  39. Piasek M, Blanua M, Kostial K, Laskey JW (2001) Placental cadmium and progesterone concentrations in cigarette smokers. Reprod Toxicol 15:673–681PubMedCrossRefGoogle Scholar
  40. Powell SR (2000) The antioxidant properties of zinc. J Nutr 130:1447S–1454SPubMedGoogle Scholar
  41. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hofeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:578–590CrossRefGoogle Scholar
  42. Ruas CBG, Carvalho CdS, De Araujo HSS, Espindola ELG, Fernandes MN (2008) Oxidative stress biomarkers of exposure in the blood of cichlid species from a metal-contaminated river. Ecotoxicol Environ Saf 71:86–93PubMedCrossRefGoogle Scholar
  43. Segner H (2008) Zebrafish (Danio rerio) as a model organism for investigating endocrine disruption. Comp Biochem Physiol C 149:187–195Google Scholar
  44. Tang R, Dodd A, Lai D, McNabb WC, Love DR (2007) Validation of zebrafish (Danio rerio) reference genes for quantitative real-time RT-PCR normalization. Acta Biochim Biophys Sin (Shanghai) 39(5):384–390CrossRefGoogle Scholar
  45. Thornalley PJ, Vasak M (1985) Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta 827:36–44PubMedCrossRefGoogle Scholar
  46. Ueda F, Seki H, Fujiwara H, Ebara K, Minomiya S, Shimaki Y (1987) Interacting effects of zinc and cadmium on the cadmium distribution in the mouse. Vet Hum Toxicol 29(5):367–372PubMedGoogle Scholar
  47. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative QPCR data by geometric averaging of multiple internal controls. Genome Biol 3:34CrossRefGoogle Scholar
  48. Viarengo A, Ponzano E, Dondero F, Fabbri R (1997) A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Mar Env Res 44:69–84CrossRefGoogle Scholar
  49. Watanabe T, Kiron V, Datoh S (1997) Trace minerals in fish nutrition. Aquaculture 151:185–207CrossRefGoogle Scholar
  50. Yamaguchi M (1998) Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med 11:119–135CrossRefGoogle Scholar
  51. Yiin SJ, Cheru CL, Sheu JY, Lin TH (1999) Cadmium-induced lipid peroxidation in rat testes and protection by selenium. Biometals 12:353–359PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Mohamed Banni
    • 1
  • Lina Chouchene
    • 2
  • Khaled Said
    • 2
  • Abdelhamid Kerkeni
    • 3
  • Imed Messaoudi
    • 2
  1. 1.Laboratoire de Biochimie et Toxicologie de l’Environnement (UR04AGR05)ISASousseTunisia
  2. 2.Unité de Recherche: Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieure de Biotechnologie de MonastirMonastirTunisia
  3. 3.Département de Biophysique, Faculté de Médecine de MonastirUnité de Recherche: Eléments Traces, Radicaux Libres, Antioxydants, Pathologies Humaines et EnvironnementMonastirTunisia

Personalised recommendations