, Volume 24, Issue 3, pp 445–453

Distorted copper homeostasis with decreased sensitivity to cisplatin upon chaperone Atox1 deletion in Drosophila

  • Haiqing Hua
  • Viola Günther
  • Oleg Georgiev
  • Walter Schaffner


Copper is an integral part of a number of proteins and thus an essential trace metal. However, free copper ions can be highly toxic and every organism has to carefully control its bioavailability. Eukaryotes contain three copper chaperones; Atx1p/Atox1 which delivers copper to ATP7 transporters located in the trans-Golgi network, Cox17 which provides copper to the mitochondrial cytochrome c oxidase, and CCS which is a copper chaperone for superoxide dismutase 1. Here we describe the knockout phenotype of the Drosophila homolog of mammalian Atox1 (ATX1 in yeast). Atox1/− flies develop normally, though at reduced numbers, and the eclosing flies are fertile. However, the mutants are unable to develop on low-copper food. Furthermore, the intestinal copper importer Ctr1B, which is regulated by copper demand, fails to be induced upon copper starvation in Atox1/− larvae. At the same time, intestinal metallothionein is upregulated. This phenotype, which resembles the one of the ATP7 mutant, is best explained by intestinal copper accumulation, combined with insufficient delivery to the rest of the body. In addition, compared to controls, Drosophila Atox1 mutants are relatively insensitive to the anticancer drug cisplatin, a compound which is also imported via Ctr1 copper transporters and was recently found to bind mammalian Atox1.


Drosophila Atox1 Copper Ctr1B Cisplatin 


  1. Arnesano F, Banci L, Bertini I, Cantini F, Ciofi-Baffoni S, Huffman DL, O’Halloran TV (2001) Characterization of the binding interface between the copper chaperone Atx1 and the first cytosolic domain of Ccc2 ATPase. J Biol Chem 276:41365–41376PubMedCrossRefGoogle Scholar
  2. Balamurugan K, Schaffner W (2006) Copper homeostasis in eukaryotes: teetering on a tightrope. Biochim Biophys Acta 1763:737–746PubMedCrossRefGoogle Scholar
  3. Balamurugan K, Egli D, Hua H, Rajaram R, Seisenbacher G, Georgiev O, Schaffner W (2007) Copper homeostasis in Drosophila by complex interplay of import, storage and behavioral avoidance. EMBO J 26:1035–1044PubMedCrossRefGoogle Scholar
  4. Bayer TA, Schafer S, Simons A, Kemmling A, Kamer T, Tepest R, Eckert A, Schussel K, Eikenberg O, Sturchler-Pierrat C, Abramowski D, Staufenbiel M, Multhaup G (2003) Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Abeta production in APP23 transgenic mice. Proc Natl Acad Sci 100:14187–14192PubMedCrossRefGoogle Scholar
  5. Bischof J, Maeda RK, Hediger M, Karch F, Basler K (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci 104:3312–3317PubMedCrossRefGoogle Scholar
  6. Boal AK, Rosenzweig AC (2009) Crystal structures of cisplatin bound to a human copper chaperone. J Am Chem Soc 131:14196–14197PubMedCrossRefGoogle Scholar
  7. Burke R, Commons E, Camakaris J (2008) Expression and localisation of the essential copper transporter DmATP7 in Drosophila neuronal and intestinal tissues. Int J Biochem Cell Biol 40:1850–1860PubMedCrossRefGoogle Scholar
  8. Camakaris J, Voskoboinik I, Mercer JF (1999) Molecular mechanisms of copper homeostasis. Biochem Biophys Res Commun 261:225–232PubMedCrossRefGoogle Scholar
  9. Cepeda V, Fuertes MA, Castilla J, Alonso C, Quevedo C, Perez JM (2007) Biochemical mechanisms of cisplatin cytotoxicity. Anticancer Agents Med Chem 7:3–18PubMedCrossRefGoogle Scholar
  10. Cobine P, Wickramasinghe WA, Harrison MD, Weber T, Solioz M, Dameron CT (1999) The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett 445:27–30PubMedCrossRefGoogle Scholar
  11. Cottrell DA, Blakely EL, Johnson MA, Ince PG, Turnbull DM (2001) Mitochondrial enzyme-deficient hippocampal neurons and choroidal cells in AD. Neurology 57:260–264PubMedGoogle Scholar
  12. Culotta VC, Yang M, O’Halloran TV (2006) Activation of superoxide dismutases: putting the metal to the pedal. Biochim Biophys Acta 1763:747–758PubMedCrossRefGoogle Scholar
  13. De Feo CJ, Aller SG, Siluvai GS, Blackburn NJ, Unger VM (2009) Three-dimensional structure of the human copper transporter hCTR1. Proc Natl Acad Sci 106:4237–4242PubMedCrossRefGoogle Scholar
  14. Egli D, Yepiskoposyan H, Selvaraj A, Balamurugan K, Rajaram R, Simons A, Multhaup G, Mettler S, Vardanyan A, Georgiev O, Schaffner W (2006) A family knockout of all four Drosophila metallothioneins reveals a central role in copper homeostasis and detoxification. Mol Cell Biol 26:2286–2296PubMedCrossRefGoogle Scholar
  15. Gupta A, Lutsenko S (2009) Human copper transporters: mechanism, role in human diseases and therapeutic potential. Future Med Chem 1:1125–1142PubMedCrossRefGoogle Scholar
  16. Hamza I, Faisst A, Prohaska J, Chen J, Gruss P, Gitlin JD (2001) The metallochaperone Atox1 plays a critical role in perinatal copper homeostasis. Proc Natl Acad Sci 98:6848–6852PubMedCrossRefGoogle Scholar
  17. Hamza I, Prohaska J, Gitlin JD (2003) Essential role for Atox1 in the copper-mediated intracellular trafficking of the Menkes ATPase. Proc Natl Acad Sci 100:1215–1220PubMedCrossRefGoogle Scholar
  18. Holzer AK, Katano K, Klomp LW, Howell SB (2004) Cisplatin rapidly down-regulates its own influx transporter hCTR1 in cultured human ovarian carcinoma cells. Clin Cancer Res 10:6744–6749PubMedCrossRefGoogle Scholar
  19. Horng YC, Cobine PA, Maxfield AB, Carr HS, Winge DR (2004) Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome c oxidase. J Biol Chem 279:35334–35340PubMedCrossRefGoogle Scholar
  20. Ishida S, Lee J, Thiele DJ, Herskowitz I (2002) Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci 99:14298–14302PubMedCrossRefGoogle Scholar
  21. Kennerson ML, Nicholson GA, Kaler SG, Kowalski B, Mercer JF, Tang J, Llanos RM, Chu S, Takata RI, Speck-Martins CE, Baets J, Almeida-Souza L, Fischer D, Timmerman V, Taylor PE, Scherer SS, Ferguson TA, Bird TD, De Jonghe P, Feely SM, Shy ME, Garbern JY (2010) Missense mutations in the copper transporter gene ATP7A cause X-linked distal hereditary motor neuropathy. Am J Hum Genet 86:343–352PubMedCrossRefGoogle Scholar
  22. Kim BE, Nevitt T, Thiele DJ (2008) Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol 4:176–185PubMedCrossRefGoogle Scholar
  23. Lee J, Pena MM, Nose Y, Thiele DJ (2002) Biochemical characterization of the human copper transporter Ctr1. J Biol Chem 277:4380–4387PubMedCrossRefGoogle Scholar
  24. Lin X, Okuda T, Holzer A, Howell SB (2002) The copper transporter CTR1 regulates cisplatin uptake in Saccharomyces cerevisiae. Mol Pharmacol 62:1154–1159PubMedCrossRefGoogle Scholar
  25. Markossian KA, Kurganov BI (2003) Copper chaperones, intracellular copper trafficking proteins. Function, structure, and mechanism of action. Biochemistry 68:827–837PubMedGoogle Scholar
  26. Maurer I, Zierz S, Moller HJ (2000) A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol Aging 21:455–462PubMedCrossRefGoogle Scholar
  27. Mercer JF (2001) The molecular basis of copper-transport diseases. Trends Mol Med 7:64–69PubMedCrossRefGoogle Scholar
  28. Mercer JF, Llanos RM (2003) Molecular and cellular aspects of copper transport in developing mammals. J Nutr 133:1481S–1484SPubMedGoogle Scholar
  29. Norgate M, Lee E, Southon A, Farlow A, Batterham P, Camakaris J, Burke R (2006) Essential roles in development and pigmentation for the Drosophila copper transporter DmATP7. Mol Biol Cell 17:475–484PubMedCrossRefGoogle Scholar
  30. O’Halloran TV, Culotta VC (2000) Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060PubMedCrossRefGoogle Scholar
  31. Petris MJ (2004) The SLC31 (Ctr) copper transporter family. Pflugers Arch 447:752–755PubMedCrossRefGoogle Scholar
  32. Prohaska JR, Gybina AA (2004) Intracellular copper transport in mammals. J Nutr 134:1003–1006PubMedGoogle Scholar
  33. Puig S, Thiele DJ (2002) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6:171–180PubMedCrossRefGoogle Scholar
  34. Safaei R, Maktabi MH, Blair BG, Larson CA, Howell SB (2009) Effects of the loss of Atox1 on the cellular pharmacology of cisplatin. J Inorg Biochem 103:333–341PubMedCrossRefGoogle Scholar
  35. Schmidt PJ, Kunst C, Culotta VC (2000) Copper activation of superoxide dismutase 1 (SOD1) in vivo. Role for protein-protein interactions with the copper chaperone for SOD1. J Biol Chem 275:33771–33776PubMedCrossRefGoogle Scholar
  36. Selvaraj A, Balamurugan K, Yepiskoposyan H, Zhou H, Egli D, Georgiev O, Thiele DJ, Schaffner W (2005) Metal-responsive transcription factor (MTF-1) handles both extremes, copper load and copper starvation, by activating different genes. Genes Dev 19:891–896PubMedCrossRefGoogle Scholar
  37. Sinani D, Adle DJ, Kim H, Lee J (2007) Distinct mechanisms for Ctr1-mediated copper and cisplatin transport. J Biol Chem 282:26775–26785PubMedCrossRefGoogle Scholar
  38. Southon A, Burke R, Norgate M, Batterham P, Camakaris J (2004) Copper homoeostasis in Drosophila melanogaster S2 cells. Biochem J 383:303–309PubMedCrossRefGoogle Scholar
  39. Srinivasan C, Posewitz MC, George GN, Winge DR (1998) Characterization of the copper chaperone Cox17 of Saccharomyces cerevisiae. Biochemistry 37:7572–7577PubMedCrossRefGoogle Scholar
  40. Steiger D, Fetchko M, Vardanyan A, Atanesyan L, Steiner K, Turski ML, Thiele DJ, Georgiev O, Schaffner W (2010) The Drosophila copper transporter Ctr1C functions in male fertility. J Biol Chem 285:17089–17097PubMedCrossRefGoogle Scholar
  41. Tumer Z, Moller LB, Horn N (1999) Mutation spectrum of ATP7A, the gene defective in Menkes disease. Adv Exp Med Biol 448:83–95PubMedGoogle Scholar
  42. Turski ML, Thiele DJ (2007) Drosophila Ctr1A functions as a copper transporter essential for development. J Biol Chem 282:24017–24026PubMedCrossRefGoogle Scholar
  43. Walker JM, Tsivkovskii R, Lutsenko S (2002) Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson’s disease protein and regulates its catalytic activity. J Biol Chem 277:27953–27959PubMedCrossRefGoogle Scholar
  44. Weaver RF, Weissmann C (1979) Mapping of RNA by a modification of the Berk-Sharp procedure: the 5′ termini of 15 S beta-globin mRNA precursor and mature 10S beta-globin mRNA have identical map coordinates. Nucleic Acids Res 7:1175–1193PubMedCrossRefGoogle Scholar
  45. Wong PC, Waggoner D, Subramaniam JR, Tessarollo L, Bartnikas TB, Culotta VC, Price DL, Rothstein J, Gitlin JD (2000) Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc Natl Acad Sci 97:2886–2891PubMedCrossRefGoogle Scholar
  46. Zhou H, Cadigan KM, Thiele DJ (2003) A copper-regulated transporter required for copper acquisition, pigmentation, and specific stages of development in Drosophila melanogaster. J Biol Chem 278:48210–48218PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Haiqing Hua
    • 1
  • Viola Günther
    • 1
  • Oleg Georgiev
    • 1
  • Walter Schaffner
    • 1
  1. 1.Institute of Molecular Life SciencesUniversity of ZürichZürichSwitzerland

Personalised recommendations