Advertisement

BioMetals

, Volume 24, Issue 5, pp 837–845 | Cite as

Uranium, thorium and rare earth elements in macrofungi: what are the genuine concentrations?

  • Jan Borovička
  • Jaroslava Kubrová
  • Jan Rohovec
  • Zdeněk Řanda
  • Colin E. Dunn
Article

Abstract

Concentrations of uranium, thorium and rare earth elements (REE) in 36 species of ectomycorrhizal (26 samples) and saprobic (25 samples) macrofungi from unpolluted sites with differing bedrock geochemistry were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Analytical results are supported by use of certified reference materials (BCR-670, BCR-667, NIST-1575a) and the reliability of the determination of uranium was verified by epithermal neutron activation analysis (ENAA). It appears that data recently published on these elements are erroneous, in part because of use of an inappropriate analytical method; and in part because of apparent contamination by soil particles resulting in elevated levels of thorium and REE. Macrofungi from unpolluted areas, in general, did not accumulate high levels of the investigated metals. Concentrations of uranium and thorium were generally below 30 and 125 μg kg−1 (dry weight), respectively. Concentrations of REE in macrofungi did not exceed 360 μg kg−1 (dry weight) and their distribution more or less followed the trend observed in post-Archean shales and loess.

Keywords

ICP-MS ENAA REE Fungi Bioaccumulation Metals 

Notes

Acknowledgments

We are very grateful to Tjakko Stijve and Emil Jelínek for helpful comments on the manuscript. This research was supported by the projects GAUK no. 3010 (The Grant Agency of Charles University) and the project IAA600480801 (The Grant Agency of the Academy of Sciences of the Czech Republic). Institutional support was provided by Institutional Research Plans (IRP) AV0Z30130516 (Institute of Geology, ASCR, Prague) and IRP AV0Z10480505 (Nuclear Physics Institute, ASCR, Řež near Prague).

References

  1. Aruguete DM, Aldstadt JH, Mueller GM (1998) Accumulation of several heavy metals and lanthanides in mushrooms (Agaricales) from the Chicago region. Sci Total Environ 224:43–56. doi: 10.1016/S0048-9697(98)00319-2 CrossRefGoogle Scholar
  2. Baeza A, Guillén J (2006) Influence of the soil bioavailability of radionuclides on the transfer of uranium and thorium to mushrooms. Appl Radiat Isot 64:1020–1026. doi: 10.1016/j.apradiso.2006.04.003 PubMedCrossRefGoogle Scholar
  3. Baeza A, Guillen FJ, Salas A, Manjon JL (2006) Distribution of radionuclides in different parts of a mushroom: influence of the degree of maturity. Sci Total Environ 359:255–266. doi: 10.1016/j.scitotenv.2005.05.015 PubMedCrossRefGoogle Scholar
  4. Bakken LR, Olsen RA (1990) Accumulation of radiocesium in fungi. Can J Microbiol 36:704–710PubMedCrossRefGoogle Scholar
  5. Borovička J, Řanda Z, Jelínek E, Kotrba P, Dunn CE (2007) Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella. Mycol Res 111:1339–1344. doi: 10.1016/j.mycres.2007.08.015 PubMedCrossRefGoogle Scholar
  6. Borovička J, Kotrba P, Gryndler M, Mihaljevič M, Řanda Z, Rohovec J, Cajthaml T, Stijve T, Dunn CE (2010) Bioaccumulation of silver in ectomycorrhizal and saprobic macrofungi from pristine and polluted areas. Sci Total Environ 408:2733–2744. doi: 10.1016/j.scitotenv.2010.02 PubMedCrossRefGoogle Scholar
  7. Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, AmsterdamGoogle Scholar
  8. Campos JA, Tejera NA, Sánchéz CJ (2009) Substrate role in the accumulation of heavy metals in sporocarps of wild fungi. Biometals 22:835–841. doi: 10.1007/s10534-009-9230-7 PubMedCrossRefGoogle Scholar
  9. Falandysz J, Szymczyk K, Ichihashi H, Bielawski L, Gucia M, Frankowska A, Yamasaki S-I (2001) ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland. Food Add Contam 18:503–513. doi: 10.1080/02652030119625 CrossRefGoogle Scholar
  10. Fomina M, Charnock JM, Hillier S, Alvarez R, Gadd GM (2007) Fungal transformations of uranium oxides. Env Microbiol 9:1696–1710. doi: 10.1111/j.1462-2920.2007.01288.x CrossRefGoogle Scholar
  11. Fomina M, Charnock JM, Hillier S, Alvarez R, Livens F, Gadd GM (2008) Role of fungi in the biogeochemical fate of depleted uranium. Curr Biol 18:R375–R377. doi: 10.1016/j.cub.2008.03.011 PubMedCrossRefGoogle Scholar
  12. Fomina M, Burford E, Hillier S, Kierans M, Gadd GM (2010) Rock-building fungi. Geomicrobiol J 27:624–629. doi: 10.1080/01490451003702974 CrossRefGoogle Scholar
  13. Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49. doi: 10.1016/j.mycres.2006.12.001 PubMedCrossRefGoogle Scholar
  14. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643. doi: 10.1099/mic.0.037143-0 PubMedCrossRefGoogle Scholar
  15. Horovitz CT, Schock HH, Horovitz-Kisimova LA (1974) The content of scandium, thorium, silver and other trace elements in different plant species. Plant Soil 40:397–403. doi: 10.1007/BF00011522 CrossRefGoogle Scholar
  16. Johanson KJ, Nikolova I, Taylor AFS, Vinichuk MM (2004) Uptake of elements by fungi in the Forsmark area. Technical Report TR-04-26, Swedish nuclear fuel and waste management Co, Stockholm, Sweden. http://www.skb.se/upload/publications/pdf/TR-04-26webb.pdf. Accessed 21 January 2011
  17. Kabata-Pendias A (2001) Trace elements in soils and plants, 3rd edition. CRC Press, Boca RatonGoogle Scholar
  18. Kalač P (2010) Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009. Food Chem 122:2–15. doi: 10.1016/j.foodchem.2010.02.045 CrossRefGoogle Scholar
  19. Kalač P, Svoboda L (2000) A review of trace element concentrations in edible mushrooms. Food Chem 69:273–281. doi: 10.1016/S0308-8146(99)00264-2 CrossRefGoogle Scholar
  20. Latiff LA, Daran ABM, Mohamed AB (1996) Relative distribution of minerals in the pileus and stalk of some selected edible mushrooms. Food Chem 56:115–121. doi: 10.1016/0308-8146(95)00129-8 CrossRefGoogle Scholar
  21. Mietelski JW, Baeza AS, Guillen J, Buzinny M, Tsigankov N, Gaca P, Jasińska M, Tomankiewicz E (2002) Plutonium and other alpha emitters in mushrooms from Poland, Spain and Ukraine. Appl Radiat Isotopes 56:717–729. doi: 10.1016/S0969-8043(01)00281-0 CrossRefGoogle Scholar
  22. Osobová M, Urban V, Jedelský PL, Borovička J, Gryndler M, Ruml T, Kotrba P (2011) Three metallothionein isoforms and sequestration of intracellular silver in hyperaccumulator Amanita strobiliformis. New Phytol. doi: 10.1111/j.1469-8137.2010.03634.x
  23. Řanda Z, Soukal L, Mizera J (2005) Possibilities of the short-term thermal and epithermal neutron activation for analysis of macromycetes (mushrooms). J Radioanal Nucl Chem 264:67–76. doi: 10.1007/s10967-005-0676-y CrossRefGoogle Scholar
  24. Rosling A, Finlay RD, Gadd GM (2009) Geomycology. Fungal Biol Rev 23:91–93. doi: 10.1016/j.fbr.2010.03.005 CrossRefGoogle Scholar
  25. Rudnick RL, Gao S (2003) The composition of the continental crust. In: Rudnick RL, Holland HD, Turekian KK (eds) The crust: treatise on geochemistry, vol 3. Elsevier-Pergamon, OxfordGoogle Scholar
  26. Šlejkovec Z, Byrne AR, Stijve T, Goessler W, Irgolic KJ (1997) Arsenic compounds in higher fungi. Appl Organomet Chem 11:673–682. doi: 10.1002/(SICI)1099-0739(199708)11:8<673:AID-AOC620>3.0.CO;2-1 CrossRefGoogle Scholar
  27. Stijve T, Andrey D, Goessler W, Guinberteau J, Dupuy G (2001a) Étude comparative des métaux lourds et d’autres éléments traces dans Gyrophragmium dunalii et dans les Agarics jaunissants de la section Arvenses. Bull Soc Mycol Fr 117:133–144Google Scholar
  28. Stijve T, Andrey D, Lucchini G, Goessler W (2001b) Simultaneous uptake of rare earth elements, aluminium, iron, and calcium by various macromycetes. Australasian Mycologist 20:92–98Google Scholar
  29. Stijve T, Andrey D, Lucchini G, Goessler W (2002) Lanthanides and other less common metals in mushrooms. Deut Lebensm-Rundsch 98:82–87Google Scholar
  30. Stijve T, Goessler W, Dupuy G (2004) Influence of soil particles on concentrations of aluminium, iron, calcium and other metals in mushrooms. Deut Lebensm-Rundsch 100:10–13Google Scholar
  31. Turhan S, Köse A, Varinlioglu A (2007) Radioactivity levels in some wild edible mushroom species in Turkey. Isot Environ Healt 43:249–256. doi: 10.1080/10256010701562794 CrossRefGoogle Scholar
  32. Wichterey K, Sawallisch S (2002) Naturally occurring radionuclides in mushrooms from uranium mining regions in Germany. Radioprotection 37:C1-353–C1-358. doi: 10.1051/radiopro/2002066 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Jan Borovička
    • 1
    • 2
  • Jaroslava Kubrová
    • 3
  • Jan Rohovec
    • 1
  • Zdeněk Řanda
    • 2
  • Colin E. Dunn
    • 4
  1. 1.Institute of Geology, v.v.i.Academy of Sciences of the Czech RepublicPrague 6Czech Republic
  2. 2.Nuclear Physics Institute, v.v.i.Academy of Sciences of the Czech RepublicŘež near PragueCzech Republic
  3. 3.Institute of Environmental Studies, Faculty of ScienceCharles UniversityPrague 2Czech Republic
  4. 4.SidneyCanada

Personalised recommendations