Advertisement

BioMetals

, Volume 24, Issue 3, pp 391–399 | Cite as

The ArsD As(III) metallochaperone

  • A. Abdul Ajees
  • Jianbo Yang
  • Barry P. RosenEmail author
Article

Abstract

Arsenic, a toxic metalloid widely existing in the environment, causes a variety of health problems. The ars operon encoded by Escherichia coli plasmid R773 has arsD and arsA genes, where ArsA is an ATPase that is the catalytic subunit of the ArsAB As(III) extrusion pump, and ArsD is an arsenic chaperone for ArsA. ArsD transfers As(III) to ArsA and increases the affinity of ArsA for As(III), allowing resistance to environmental concentrations of arsenic. Cys12, Cys13 and Cys18 in ArsD form a three sulfur-coordinated As(III) binding site that is essential for metallochaperone activity. ATP hydrolysis by ArsA is required for transfer of As(III) from ArsD to ArsA, suggesting that transfer occurs with a conformation of ArsA that transiently forms during the catalytic cycle. The 1.4 Å x-ray crystal structure of ArsD shows a core of four β-strands flanked by four α-helices in a thioredoxin fold. Docking of ArsD with ArsA was modeled in silico. Independently ArsD mutants exhibiting either weaker or stronger interaction with ArsA were selected. The locations of the mutations mapped on the surface of ArsD are consistent with the docking model. The results suggest that the interface with ArsA involves one surface of α1 helix and metalloid binding site of ArsD.

Keywords

Arsenic ArsD Metallochaperone ArsA ATP-driven efflux pump 

Notes

Acknowledgments

This work was supported by United States Public Health Service Grants AI43428 and GM55425.

References

  1. Auld KL, Hitchcock AL, Doherty HK, Frietze S, Huang LS, Silver PA (2006) The conserved ATPase Get3/Arr4 modulates the activity of membrane-associated proteins in Saccharomyces cerevisiae. Genetics 174:215–227PubMedCrossRefGoogle Scholar
  2. Bhattacharjee H, Li J, Ksenzenko MY, Rosen BP (1995) Role of cysteinyl residues in metalloactivation of the oxyanion-translocating ArsA ATPase. J Biol Chem 270:11245–11250PubMedCrossRefGoogle Scholar
  3. Boal AK, Rosenzweig AC (2009) Structural biology of copper trafficking. Chem Rev 109:4760–4779PubMedCrossRefGoogle Scholar
  4. Bozkurt G, Stjepanovic G, Vilardi F, Amlacher S, Wild K, Bange G, Favaloro V, Rippe K, Hurt E, Dobberstein B, Sinning I (2009) Structural insights into tail-anchored protein binding and membrane insertion by Get3. Proc Natl Acad Sci USA 106:21131–21136PubMedCrossRefGoogle Scholar
  5. Chen Y, Rosen BP (1997) Metalloregulatory properties of the ArsD repressor. J Biol Chem 272:14257–14262PubMedCrossRefGoogle Scholar
  6. Dey S, Rosen BP (1995) Dual mode of energy coupling by the oxyanion-translocating ArsB protein. J Bacteriol 177:385–389PubMedCrossRefGoogle Scholar
  7. Dey S, Dou D, Rosen BP (1994a) ATP-dependent arsenite transport in everted membrane vesicles of Escherichia coli. J Biol Chem 269:25442–25446PubMedGoogle Scholar
  8. Dey S, Dou D, Tisa LS, Rosen BP (1994b) Interaction of the catalytic and the membrane subunits of an oxyanion-translocating ATPase. Arch Biochem Biophys 311:418–424PubMedCrossRefGoogle Scholar
  9. Fu HL, Rosen BP, Bhattacharjee H (2010) Biochemical characterization of a novel ArsA ATPase complex from Alkaliphilus metalliredigens QYMF. FEBS Lett 584:3089–3094PubMedCrossRefGoogle Scholar
  10. Kosower NS, Newton GL, Kosower EM, Ranney HM (1980) Bimane fluorescent labels. Characterization of the bimane labeling of human hemoglobin. Biochim Biophys Acta 622:201–209PubMedGoogle Scholar
  11. Li J, Rosen BP (2000) The linker peptide of the ArsA ATPase. Mol Microbiol 35:361–367PubMedCrossRefGoogle Scholar
  12. Li S, Chen Y, Rosen BP (2001) Role of vicinal cysteine pairs in metalloid sensing by the ArsD As(III)-responsive repressor. Mol Microbiol 41:687–696PubMedCrossRefGoogle Scholar
  13. Lin YF, Walmsley AR, Rosen BP (2006) An arsenic metallochaperone for an arsenic detoxification pump. Proc Natl Acad Sci USA 103:15617–15622PubMedCrossRefGoogle Scholar
  14. Lin YF, Yang J, Rosen BP (2007a) ArsD residues Cys12, Cys13, and Cys18 form an As(III)-binding site required for arsenic metallochaperone activity. J Biol Chem 282:16783–16791PubMedCrossRefGoogle Scholar
  15. Lin YF, Yang J, Rosen BP (2007b) ArsD: an As(III) metallochaperone for the ArsAB As(III)-translocating ATPase. J Bioenerg Biomembr 39:453–458PubMedCrossRefGoogle Scholar
  16. Mateja A, Szlachcic A, Downing ME, Dobosz M, Mariappan M, Hegde RS, Keenan RJ (2009) The structural basis of tail-anchored membrane protein recognition by Get3. Nature 461:361–366PubMedCrossRefGoogle Scholar
  17. Meng YL, Liu Z, Rosen BP (2004) As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli. J Biol Chem 279:18334–18341PubMedCrossRefGoogle Scholar
  18. Mukhopadhyay R, Rosen BP (2002) Arsenate reductases in prokaryotes and eukaryotes. Environ Health Perspect 110(5):745–748PubMedGoogle Scholar
  19. Pervushin K, Braun D, Fernandez C, Wuthrich K (2000) [15 N, 1H]/ [13C, 1H]-TROSY for simultaneous detection of backbone 15 N–1H, aromatic 13C–1H and side-chain 15 N–1H2 correlations in large proteins. J Biomol NMR 17:195–202 PubMedCrossRefGoogle Scholar
  20. Pufahl RA, Singer CP, Peariso KL, Lin SJ, Schmidt PJ, Fahrni CJ, Culotta VC, Penner-Hahn JE, O’Halloran TV (1997) Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 278:853–856PubMedCrossRefGoogle Scholar
  21. Ramírez-Solis A, Mukopadhyay R, Rosen BP, Stemmler TL (2004) Experimental and theoretical characterization of arsenite in water: insights into the coordination environment of As-O. Inorg Chem 43:2954–2959PubMedCrossRefGoogle Scholar
  22. Rosenzweig AC (2002) Metallochaperones: bind and deliver. Chem Biol 9:673–677PubMedCrossRefGoogle Scholar
  23. Ruan X, Bhattacharjee H, Rosen BP (2006) Cys-113 and Cys-422 form a high affinity metalloid binding site in the ArsA ATPase. J Biol Chem 281:9925–9934PubMedCrossRefGoogle Scholar
  24. Wishart DS, Sykes BD, Richards FM (1991) Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Bio 222:311–333CrossRefGoogle Scholar
  25. Wu J, Rosen BP (1993) The arsD gene encodes a second trans-acting regulatory protein of the plasmid-encoded arsenical resistance operon. Mol Microbiol 8:615–623PubMedCrossRefGoogle Scholar
  26. Xu C, Rosen BP (1999) Metalloregulation of soft metal resistance pumps. In: Sarkar B (ed) Metals and genetics. Plenum Press, New York, pp 5–19Google Scholar
  27. Yang J, Rawat S, Stemmler TL, Rosen BP (2010) Arsenic binding and transfer by the ArsD As(III) metallochaperone. Biochemistry 49:3658–3666PubMedCrossRefGoogle Scholar
  28. Yang J, Abdul Ajees A, Rosen BP (2011) Genetic mapping of the interface between the ArsD metallochaperone and the ArsA ATPase. Mol Microbiol. doi: 10.1111/j.1365-2958.2010.07494.x
  29. Ye J, Ajees AA, Yang J, Rosen BP (2010a) The 1.4 A crystal structure of the ArsD arsenic metallochaperone provides insights into its interaction with the ArsA ATPase. Biochemistry 49:5206–5212PubMedCrossRefGoogle Scholar
  30. Ye J, He Y, Skalicky J, Rosen BP, Stemmler TL (2010b) Resonance assignments and secondary structure prediction of the As(III) metallochaperone ArsD in solution. Biomol NMR Assign 2:211–219Google Scholar
  31. Zhou T, Radaev S, Rosen BP, Gatti DL (2000) Structure of the ArsA ATPase: the catalytic subunit of a heavy metal resistance pump. EMBO J 19:1–8CrossRefGoogle Scholar
  32. Zhou T, Radaev S, Rosen BP, Gatti DL (2001) Conformational changes in four regions of the Escherichia coli ArsA ATPase link ATP hydrolysis to ion translocation. J Biol Chem 276:30414–30422PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  1. 1.Department of Cellular Biology and Pharmacology, Herbert Wertheim College of MedicineFlorida International UniversityMiamiUSA
  2. 2.Department of Biochemistry and Molecular Biology, School of MedicineWayne State UniversityDetroitUSA

Personalised recommendations