, Volume 24, Issue 1, pp 93–103 | Cite as

Cadmium-induced heme oxygenase-1 gene expression is associated with the depletion of glutathione in the roots of Medicago sativa

  • Weiti Cui
  • Guangqing Fu
  • Honghong Wu
  • Wenbiao ShenEmail author


Following previous findings that cadmium (Cd) induces heme oxygenase-1 (HO1) gene expression in alfalfa seedling roots, we now show that the decreased glutathione (GSH) and ascorbic acid (AsA) contents, induction of HO-1 gene expression and its protein level by Cd was mimicked by a GSH depletor diethylmaleate (DEM). Meanwhile, above Cd- or DEM-induced decreased GSH content followed by HO-1 up-regulation could be strengthened or reversed differentially by the application of a selective inhibitor of GSH biosynthesis l-buthionine-sulfoximine (BSO), or exogenous GSH and AsA, respectively. The antioxidative behavior of HO-1 induction was further confirmed by histochemical staining for the detection of loss of membrane integrity in a short period of treatment time. Additionally, the induction of HO-1 transcript was inhibited by the transcriptional inhibitor actinomycin D (ActD) or protein synthesis inhibitor cycloheximide (CX, especially). In contrast, the level of HO-2 transcript did not change upon various treatments. Together, above results suggested that Cd-induced up-regulation of HO-1 gene expression is associated with GSH depletion, which is at least existing transcriptional regulation level, thus leading to enhanced antioxidative capability transiently.


Alfalfa seedling roots Ascorbic acid Cd-induced oxidative stress Glutathione depletion HO-1 gene expression 



This work was supported by the Program for New Century Excellent Talents in University (grant no. NCET-07-0441 to W.S.), the National Natural Science Foundation of China (grant no. 30971711 to W.S.), and the Fundamental Research Funds for the Central Universities (grant no. KYZ200905 to W.S.). We also thank Dr. Evan Evans from the University of Tasmania, Australia, for his kind help in writing the manuscript.


  1. Anwar AA, Li FYL, Leake DS, Ishii T, Mann GE, Siow RCM (2005) Induction of heme oxygenase 1 by moderately oxidized low-density lipoproteins in human vascular smooth muscle cells: role of mitogen-activated protein kinases and Nrf2. Free Radic Biol Med 39:227–236. doi: 10.1016/j.freeradbiomed.2005.03.012 CrossRefPubMedGoogle Scholar
  2. Balestrasse KB, Noriega GO, Batlle A, Tomaro ML (2005) Involvement of heme oxygenase as antioxidant defense in soybean nodules. Free Radic Res 39:145–151. doi: 10.1080/10715760400022319 CrossRefPubMedGoogle Scholar
  3. Balestrasse KB, Yannarelli GG, Noriega GO, Batlle A, Tomaro ML (2008) Heme oxygenase and catalase gene expression in nodules and roots of soybean plants subjected to cadmium stress. Biometals 21:433–441. doi: 10.1007/s10534-008-9132-0 CrossRefPubMedGoogle Scholar
  4. Baudouin E, Frendo P, Le Gleuher M, Puppo A (2004) A Medicago sativa haem oxygenase gene is preferentially expressed in root nodules. J Exp Bot 55:43–47. doi: 10.1093/jxb/erh020 CrossRefPubMedGoogle Scholar
  5. Becker JC, Grosser N, Boknik P, Schröder H, Domschke W, Pohle T (2003) Gastroprotection by vitamin C—a heme oxygenase-1-dependent mechanism? Biochem Biophys Res Commun 312:507–512. doi: 10.1016/j.bbrc.2003.10.146 CrossRefPubMedGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 CrossRefPubMedGoogle Scholar
  7. Chen XY, Ding X, Xu S, Wang R, Xuan W, Cao ZY, Chen J, Wu HH, Ye MB, Shen WB (2009) Endogenous hydrogen peroxide plays a positive role in the upregulation of heme oxygenase and acclimation to oxidative stress in wheat seedling leaves. J Integr Plant Biol 51:951–960. doi: 10.1111/j.1744-7909.2009.00869.x CrossRefPubMedGoogle Scholar
  8. Davis SJ, Bhoo SH, Durski AM, Walker JM, Vierstra RD (2001) The heme-oxygenase family required for phytochrome chromophore biosynthesis is necessary for proper photomorphogenesis in higher plants. Plant Physiol 126:656–669CrossRefPubMedGoogle Scholar
  9. De Vos CH, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858CrossRefPubMedGoogle Scholar
  10. Elbekai RH, Duke J, El-Kadi AOS (2007) Ascorbic acid differentially modulates the induction of heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1 and glutathione S-transferase Ya by As3+, Cd2+ and Cr6+. Cancer Lett 246:54–62. doi: 10.1016/j.canlet.2006.01.029 CrossRefPubMedGoogle Scholar
  11. Emborg TJ, Walker JM, Noh B, Vierstra RD (2006) Multiple heme oxygenase family members contribute to the biosynthesis of the phytochrome chromophore in Arabidopsis. Plant Physiol 140:856–868. doi: 10.1104/pp.105.074211 CrossRefPubMedGoogle Scholar
  12. Ewing JF, Maines MD (1993) Glutathione depletion induces heme oxygenase-1 (HSP32) mRNA and protein in rat brain. J Neurochem 60:1512–1519. doi: 10.1111/j.1471-4159.1993.tb03315.x CrossRefPubMedGoogle Scholar
  13. Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905. doi: 10.1089/ars.2008.2177 CrossRefPubMedGoogle Scholar
  14. Han Y, Zhang J, Chen XY, Gao ZZ, Xuan W, Xu S, Ding X, Shen WB (2008) Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa. New Phytol 177:155–166. doi: 10.1111/j.1469-8137.2007.02251.x PubMedGoogle Scholar
  15. Harris LK, Mann GE, Ruiz E, Mushtaq S, Leake DS (2006) Ascorbate does not protect macrophages against apoptosis induced by oxidised low density lipoprotein. Arch Biochem Biophys 455:68–76. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  16. Horikawa S, Yoneya R, Nagashima Y, Hagiwara K, Ozasa H (2002) Prior induction of heme oxygenase-1 with glutathione depletor ameliorates the renal ischemia and reperfusion injury in the rat. FEBS Lett 510:221–224. doi: 10.1016/S0014-5793(01)03270-7 CrossRefPubMedGoogle Scholar
  17. Immenschuh S, Ramadori G (2000) Gene regulation of heme oxygenase-1 as a therapeutic target. Biochem Pharmacol 60:1121–1128. doi: 10.1016/S0006-2952(00)00443-3 CrossRefPubMedGoogle Scholar
  18. Law MY, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. Biochem J 210:899–903PubMedGoogle Scholar
  19. Ling TF, Zhang B, Cui WT, Wu MZ, Lin JS, Zhou WT, Huang JJ, Shen WB (2009) Carbon monoxide mitigates salt-induced inhibition of root growth and suppresses programmed cell death in wheat primary roots by inhibiting superoxide anion overproduction. Plant Sci 177:331–340. doi: 10.1016/j.plantsci.2009.06.004 CrossRefGoogle Scholar
  20. Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37:517–554. doi: 10.1146/annurev.pharmtox.37.1.517 CrossRefPubMedGoogle Scholar
  21. Matsumoto H, Ishikawa K, Itabe H, Maruyama Y (2006) Carbon monoxide and bilirubin from heme oxygenase-1 suppresses reactive oxygen species generation and plasminogen activator inhibitor-1 induction. Mol Cell Biochem 291:21–28. doi: 10.1007/s11010-006-9190-y CrossRefPubMedGoogle Scholar
  22. Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178. doi: 10.1093/jxb/eri017 PubMedGoogle Scholar
  23. Noriega GO, Balestrasse KB, Batlle A, Tomaro ML (2004) Heme oxygenase exerts a protective role against oxidative stress in soybean leaves. Biochem Biophys Res Commun 323:1003–1008. doi: 10.1016/j.bbrc.2004.08.199 CrossRefPubMedGoogle Scholar
  24. Noriega GO, Yannarelli GG, Balestrasse KB, Batlle A, Tomaro ML (2007) The effect of nitric oxide on heme oxygenase gene expression in soybean leaves. Planta 226:1155–1163. doi: 10.1007/s00425-007-0561-8 CrossRefPubMedGoogle Scholar
  25. Oguro T, Hayashi M, Numazawa S, Asakawa K, Yoshida T (1996) Heme oxygenase-1 gene expression by a glutathione depletor, phorone, mediated through AP-1 activation in rats. Biochem Biophys Res Commun 221:259–265. doi: 10.1006/bbrc.1996.0583 CrossRefPubMedGoogle Scholar
  26. Ortega-Villasante C, Rellán-Álvarez R, Del Campo FF, Carpena-Ruiz RO, Hernández LE (2005) Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot 56:2239–2251. doi: 10.1093/jxb/eri223 CrossRefPubMedGoogle Scholar
  27. Poss KD, Tonegawa S (1997) Reduced stress defense in heme oxygenase-1 deficient cells. Proc Natl Acad Sci USA 94:10925–10930CrossRefPubMedGoogle Scholar
  28. Santa-Cruz DM, Pacienza NA, Polizio AH, Balestrasse KB, Tomaro ML, Yannarelli GG (2010) Nitric oxide synthase-like dependent NO production enhances heme oxygenase up-regulation in ultraviolet-B-irradiated soybean plants. Phytochemistry. doi: 10.1016/j.phytochem.2010.07.009
  29. Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiol 127:887–898. doi: 10.1104/pp.010318 CrossRefPubMedGoogle Scholar
  30. Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50. doi: 10.1016/j.tplants.2008.10.007 CrossRefPubMedGoogle Scholar
  31. Shekhawat GS, Verma K (2010) Haem oxygenase (HO): an overlooked enzyme of plant metabolism and defence. J Exp Bot 61:2255–2270. doi: 10.1093/jxb/erq074 CrossRefPubMedGoogle Scholar
  32. Wu M, Huang J, Xu S, Ling T, Xie Y, Shen W (2010) Haem oxygenase delays programmed cell death in wheat aleurone layers by modulation of hydrogen peroxide metabolism. J Exp Bot. doi: 10.1093/jxb/erq261
  33. Xie YJ, Ling TF, Han Y, Liu KL, Zheng QS, Huang LQ, Yuan XX, He Z, Hu B, Fang L, Shen ZG, Yang Q, Shen WB (2008) Carbon monoxide enhances salt tolerance by nitric oxide-mediated maintenance of ion homeostasis and up-regulation of antioxidant defense in wheat seedling root. Plant Cell Environ 31:1864–1881. doi: 10.1111/j.1365-3040.2008.01888.x CrossRefPubMedGoogle Scholar
  34. Xuan W, Zhu FY, Xu S, Huang BK, Ling TF, Qi JY, Ye MB, Shen WB (2008) The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process. Plant Physiol 148:881–893. doi: 10.1104/pp.108.125567 CrossRefPubMedGoogle Scholar
  35. Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199–208CrossRefPubMedGoogle Scholar
  36. Yannarelli GG, Noriega GO, Batlle A, Tomaro ML (2006) Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species. Planta 224:1154–1162. doi: 10.1007/s00425-006-0297-x CrossRefPubMedGoogle Scholar
  37. Zilli CG, Balestrasse KB, Yannarelli GG, Polizio AH, Santa-Cruz DM, Tomaro ML (2008) Heme oxygenase up-regulation under salt stress protects nitrogen metabolism in nodules of soybean plants. Environ Exp Bot 64:83–89. doi: 10.1016/j.envexpbot.2008.03.005 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Weiti Cui
    • 1
    • 2
  • Guangqing Fu
    • 1
    • 2
  • Honghong Wu
    • 1
    • 2
  • Wenbiao Shen
    • 1
    • 2
    Email author
  1. 1.College of Life Sciences, Cooperative Demonstration Laboratory of Centrifuge TechniqueNanjing Agricultural UniversityNanjingPeople’s Republic of China
  2. 2.Beckman Coulter Ltd. Co.Nanjing Agricultural UniversityNanjingPeople’s Republic of China

Personalised recommendations