Advertisement

BioMetals

, Volume 24, Issue 1, pp 73–83 | Cite as

Differential responses of oat genotypes: oxidative stress provoked by aluminum

  • Luciane Belmonte Pereira
  • Cinthia Melazzo de A. Mazzanti
  • Denise Cargnelutti
  • Liana Verônica Rossato
  • Jamile F. Gonçalves
  • Nicéia Calgaroto
  • Valderi Dressler
  • Fernando T. Nicoloso
  • Luiz Carlos Federizzi
  • Vera M. Morsch
  • Maria R. C. SchetingerEmail author
Article

Abstract

The phytotoxic effects of aluminum and the mechanisms of genetically-based Al tolerance have been widely investigated, as reported in many papers and reviews. However, investigations on many Al-sensitive and Al-resistant species demonstrate that Al phytotoxicity and Al-resistance mechanisms are extremely complex phenomena. The objective of the present study was to analyze the effects of aluminum on the activity of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX). Also was evaluated the lipid peroxidation, H2O2 content, levels of ascorbic acid (ASA), non-protein thiols (NPSH) and Al content in three genotypes of oat, Avena sativa L. (UFRGS 930598, UFRGS 17, and UFRGS 280). The genotypes were grown in different concentrations of Al ranging from 90 to 555 μM for 5 days. The antioxidant system was unable to overcome toxicity resulting in negative effects such as lipid peroxidation and H2O2 content in UFRGS 930598. The results showed that UFRGS 930598 was the most sensitive genotype. UFRGS 17 and UFRGS 280 were more resistant to Al toxicity. These results suggest that UFRGS 17 has mechanisms of external detoxification and UFRGS 280 has mechanisms of internal detoxification. The different behavior of enzymatic and non-enzymatic antioxidants of the genotypes showed that aluminum resistance in UFGRS 17 and UFRGS 280 may be related to oxidative stress.

Keywords

Avena sativa Superoxide dismutase Hydrogen peroxide Ascorbate peroxidase Catalase Aluminum content Oxidative stress 

Notes

Acknowledgments

The authors wish to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação e Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS).

References

  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefPubMedGoogle Scholar
  2. Barceló J, Poschenrieder C, Vazquez MD, Gunsé B (1996) Aluminium phytotoxicity—a challenge for plant scientists. Fertilizer Res 43:217–223CrossRefGoogle Scholar
  3. Cakmak I, Horst WJ (1991) Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468CrossRefGoogle Scholar
  4. Chaffai R, Marzouk B, El Ferjan E (2005) Aluminum mediates compositional alterations of polar lipid classes in maize seedlings. Phytochemistry 66:1903–1912CrossRefPubMedGoogle Scholar
  5. Ciamporová M (2002) Morphological and structural responses of plant roots to aluminum at organ. Biol Plant 45:161–171CrossRefGoogle Scholar
  6. Creissen G, Fimin J, Fryer M, Kular B, Leyland N, Reynolds H, Pastori G, Wellburn F, Baker N, Wellburn A, Mullineaux P (1999) Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. Plant Cell 11:1277–1292CrossRefPubMedGoogle Scholar
  7. Cruz-Ortega R, Cushman JC, Ownby JD (1997) cDNA clones enconding 1,3-β-glucanase and a fimbrin-like cytoskeletal protein are induced by Al toxicity in wheat roots. Plant Physiol 114:1453–1460CrossRefPubMedGoogle Scholar
  8. De Biasi MG, Astolfi S, Acampora A, Zuchi S, Fonzo V, Santagelo E, Caccia R, Badiani M, Soressi GP (2003) A H2O2-forming peroxidase rather than a NAD(P)H-dependent O2 -synthase may be the major player in cell death responses controlled by the Pto-Fen complex following fenthion treatment. Funct Plant Biol 30:409–417CrossRefGoogle Scholar
  9. Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321PubMedGoogle Scholar
  10. Dubey RS, Sharma P (2004) Ascorbate peroxidase from rice seedlings: properties of enzyme isoforms, effects of stresses and protective roles of osmolytes. Plant Sci 167:541–550CrossRefGoogle Scholar
  11. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77CrossRefPubMedGoogle Scholar
  12. El-Moshaty FIB, Pike SM, Novacky AJ, Sehgal OP (1993) Lipid peroxidation and superoxide production in cowpea (Vigna unguiculata) leaves infected with tobacco ringspot virus or southern bean mosaic virus. Physiol Mol Plant Pathol 43:109–119CrossRefGoogle Scholar
  13. Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol 122:657–665CrossRefPubMedGoogle Scholar
  14. Federizzi LC, Chacón CDS, Milach SCK, Pacheco MT (2000) Variabilidade genética e herança da tolerância à toxicidade do alumínio em aveia. Pesqui Agropecu Bras 35:1797–1808Google Scholar
  15. Gonçalves JF, Tabaldi LA, Cargnelutti D, Pereira LB, Maldaner J, Beccker AG, Rossato LV, Rauber R, Bagatini MD, Bisognin DA, Schetinger MRC, Nicoloso FT (2009) Cadmium induced oxidative stress in two potato cultivars. Biometals 22:779–792CrossRefPubMedGoogle Scholar
  16. Gratão PL, Polle A, Lea PJ (2005) Making the life of heavy-metal stressed plants a little easier. Funct Plant Biol 32:481–494CrossRefGoogle Scholar
  17. Hamel F, Breton C, Houde M (1998) Isolation and characterization of wheat aluminum-regulated genes: possible involvement of aluminum as a pathogenesis response elicitor. Planta 205:531–538CrossRefPubMedGoogle Scholar
  18. Jacques-Silva MC, Nogueira CW, Broch LC, Flores EM, Rocha JB (2001) Diphenyl diselenide and ascorbic acid changes deposition of selenium and ascorbic acid in liver and brain of mice. Pharmacol Toxicol 88:119–125CrossRefPubMedGoogle Scholar
  19. Kochian LV (1995) Cellular mechanism of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260CrossRefGoogle Scholar
  20. Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quences ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:781–1787CrossRefGoogle Scholar
  21. Ma JF, Hiradate S (2000) Form of aluminum for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta 211:355–360CrossRefPubMedGoogle Scholar
  22. Ma FJ, Ryan PR, Delhaize E (2001) Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278CrossRefPubMedGoogle Scholar
  23. Matsumoto H (2000) Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol 200:1–46CrossRefPubMedGoogle Scholar
  24. Mc Cord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055Google Scholar
  25. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410CrossRefPubMedGoogle Scholar
  26. Morita A, Yanagisawa O, Takatsu S, Maeda S, Hiradate S (2008) Mechanism for the detoxification of aluminum in roots of tea plant (Camellia sinensis (L.) Kuntze). Phytochemistry 69:147–153CrossRefPubMedGoogle Scholar
  27. Noctor G, Foyer C (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279CrossRefPubMedGoogle Scholar
  28. Oteiza PI (1994) A mechanism for the stimulatory effect of aluminum on iron-induced lipid peroxidation. Arch Biochem Biophys 308:374–379CrossRefPubMedGoogle Scholar
  29. Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15:939–951CrossRefPubMedGoogle Scholar
  30. Poschenrieder C, Gunsé B, Corrales I, Barceló J (2008) A glance into aluminum toxicity and resistance in plants. Sci Total Environ 400:356–368CrossRefPubMedGoogle Scholar
  31. Richards KD, Schott E, Sharma YK, Devs KR, Gardner RC (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116:409–418CrossRefPubMedGoogle Scholar
  32. Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3:229–235PubMedGoogle Scholar
  33. Snowden KC, Richards KD, Gardner RC (1995) Aluminum-induced gene. Induction of toxic metals, low calcium and wounding and pattern of expression in root tips. Plant Physiol 107:341–348PubMedGoogle Scholar
  34. Sugimoto M, Sakamoto W (1997) Putative phopholipid hydroperoxide glutathione peroxidase gene from Arabidopsis thaliana induced by oxidative stress. Genes Genet Syst 72:311–316CrossRefPubMedGoogle Scholar
  35. Tamás L, Huttová J, Mistrík I, Simonovicová M, Siroká B (2006) Aluminum-induced drought and oxidative stress in barley roots. J Plant Physiol 163:781–784CrossRefPubMedGoogle Scholar
  36. Tria J, Butler ECV, Haddas PR, Bowie AR (2007) Determination of aluminium in natural water samples. Anal Chim Acta 588:153–165CrossRefPubMedGoogle Scholar
  37. Wang J, Zhang H, Allen RD (1999) Overexpression of an Arabidopsis peroximal APX gene in tobacco increases protection against oxidative stress. Plant Cell Physiol 40:725–732PubMedGoogle Scholar
  38. Yamamoto Y, Koayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but no the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199–208CrossRefPubMedGoogle Scholar
  39. Yamamoto Y, Matsumoto H, Devi SR (2003) An intracellular mechanism of aluminum tolerance associated with high antioxidant status in cultured tobacco cells. J Inorg Biochem 97:59–68CrossRefPubMedGoogle Scholar
  40. Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Luciane Belmonte Pereira
    • 1
    • 3
  • Cinthia Melazzo de A. Mazzanti
    • 1
    • 3
  • Denise Cargnelutti
    • 1
    • 3
  • Liana Verônica Rossato
    • 1
    • 3
  • Jamile F. Gonçalves
    • 1
    • 3
  • Nicéia Calgaroto
    • 2
  • Valderi Dressler
    • 1
  • Fernando T. Nicoloso
    • 2
  • Luiz Carlos Federizzi
    • 4
    • 5
  • Vera M. Morsch
    • 1
    • 3
  • Maria R. C. Schetinger
    • 1
    • 3
    Email author
  1. 1.Departamento de Química eUniversidade Federal de Santa MariaSanta MariaBrazil
  2. 2.BiologiaUniversidade Federal de Santa MariaSanta MariaBrazil
  3. 3.Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e ExatasUniversidade Federal de Santa MariaSanta MariaBrazil
  4. 4.Departamento de Plantas de LavouraUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  5. 5.Faculdade de AgronomiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations