, Volume 24, Issue 1, pp 59–71 | Cite as

Morphophysiological responses and programmed cell death induced by cadmium in Genipa americana L. (Rubiaceae)

  • Vânia L. Souza
  • Alex-Alan F. de AlmeidaEmail author
  • Stella G. C. Lima
  • Júlio C. de M. Cascardo
  • Delmira da C. Silva
  • Pedro A. O. Mangabeira
  • Fábio P. Gomes


Cadmium (Cd) originating from atmospheric deposits, from industrial residues and from the application of phosphate fertilizers may accumulate in high concentrations in soil, water and food, thus becoming highly toxic to plants, animals and human beings. Once accumulated in an organism, Cd discharges and sets off a sequence of biochemical reactions and morphophysiological changes which may cause cell death in several tissues and organs. In order to test the hypothesis that Cd interferes in the metabolism of G. americana, a greenhouse experiment was conducted to measure eventual morphophysiological responses and cell death induced by Cd in this species. The plants were exposed to Cd concentrations ranging from 0 to 16 mg l−1, in a nutritive solution. In TUNEL reaction, it was shown that Cd caused morphological changes in the cell nucleus of root tip and leaf tissues, which are typical for apoptosis. Cadmium induced anatomical changes in roots and leaves, such as the lignification of cell walls in root tissues and leaf main vein. In addition, the leaf mesophyll showed increase of the intercellular spaces. On the other hand, Cd caused reductions in the net photosynthetic rate, stomatal conductance and leaf transpiration, while the maximum potential quantum efficiency of PS2 (Fv/Fm) was unchanged. Cadmium accumulated in the root system in high concentrations, with low translocation for the shoot, and promoted an increase of Ca and Zn levels in the roots and a decrease of K level in the leaves. High concentrations of Cd promoted morphophysiological changes and caused cell death in roots and leaves tissues of G. americana.


Anatomy Apoptosis Heavy metal Mineral nutrients Photosynthesis 



We gratefully acknowledge the financial support provided by Fundação de Amparo a Pesquisa do Estado da Bahia (FAPESB) and Universidade Estadual de Santa Cruz (UESC). We also thank the technicians of the Service Central d’Analises, Lyon, França and Mr. Martin Brendel for their invaluable suggestions and manuscript review. V. L. Souza was supported by Conselho Nacional de Pesquisa (CNPq).


  1. Almeida A-AF, Valle RR, Mielke MS, Gomes FP (2007) Tolerance and prospection of phytoremediator woody species of Cd, Pb, Cu and Cr. Braz J Plant Physiol 19:83–98Google Scholar
  2. Arduini I, Godbold DL, Onnis A (1996) Cadmium and copper uptake and in Mediterranean tree seedlings. Physiol Plant 97:111–117CrossRefGoogle Scholar
  3. Arduini I, Masoni A, Mariotti M, Ercoli L (2004) Low cadmium application increase miscanthus growth and cadmium translocation. Environ Exp Bot 52:89–100CrossRefGoogle Scholar
  4. Barbosa RMT, Almeida A-AF, Mielke MS, Loguercio LL, Mangabeira PAO, Gomes FP (2007) A physiological analysis of Genipa americana L.: a potential phytoremediator tree for chromium polluted watersheds. Environ Exp Bot 61:264–271CrossRefGoogle Scholar
  5. Berboodi BSH, Samadi L (2004) Detection of apoptotic bodies and oligonucleosomal DNA fragments in cadmium-treated root apical cells of Allium cepa Linnaeus. Plant Sci 167:411–416CrossRefGoogle Scholar
  6. Ceita GO, Macêdo JMA, Santos TB, Alemanno L, Gesteira AS, Micheli F, Mariano AC, Gramacho KP, Silva DC, Meinhardt L, Mazzafera P, Pereira GAG, Cascardo JC (2007) Involvement of calcium oxalate degradation during programmed cell death in Theobroma cacao tissues triggered by the hemibiotrophic fungus Moniliophthora perniciosa. Plant Sci 173:106–117CrossRefGoogle Scholar
  7. Chaoui A, El Ferjani E (2005) Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedlings. C R Biol 328:23–31CrossRefPubMedGoogle Scholar
  8. Chugh LK, Sawhney SK (1999) Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium. Plant Physiol Biochem 37:297–303CrossRefGoogle Scholar
  9. Cosio C, Desantis L, Frey B, Diallo S, Keller C (2005) Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot 56:765–775CrossRefPubMedGoogle Scholar
  10. Deng X, Wang Y, Chou J, Cadet JL (2001) Methamphetamine causes widespread apoptosis in the mouse brain: evidence from using an improved TUNEL histochemical method. Mol Brain Res 93:64–69CrossRefPubMedGoogle Scholar
  11. Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109CrossRefPubMedGoogle Scholar
  12. Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Califórnia Agricultural Experiment Station, Berkeley, p 32Google Scholar
  13. Houot V, Etienne P, Petitot A-S, Barbier S, Blein J-P, Suty L (2001) Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dose- dependent manner. J Exp Bot 52:1721–1730CrossRefPubMedGoogle Scholar
  14. Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Company Inc., New YorkGoogle Scholar
  15. Kraus JE, Arduin M (1997) Manual básico de métodos em morfologia vegetal. EDUR, Rio de JaneiroGoogle Scholar
  16. Ma M, Lau P-S, Jia Y-T, Tsang W-K, Lam SKS, Tam NFY, Wong Y-S (2003) The isolation and characterization of Type 1 metallothionein (MT) cDNA from a heavy-metal-tolerant plant. Festuca rubra cv. Merlin. Plant Sci 164:51–60Google Scholar
  17. Mendelssohn IA, Mckee KL, Kong T (2001) A comparison of physiological indicators of sublethal cadmium stress in wetland plants. Environ Exp Bot 46:263–275CrossRefGoogle Scholar
  18. Mielke MS, Almeida A-AF, Gomes FP, Aguilar MAG, Mangabeira PAO (2003) Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding. Environ Exp Bot 50:221–231CrossRefGoogle Scholar
  19. Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610CrossRefPubMedGoogle Scholar
  20. Nada E, Ferjani EBA, Ali ER, Bechir EBR, Imed EM, Makki EB (2007) Cadmium-induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Acta Physiol Plant 29:57–62CrossRefGoogle Scholar
  21. Paiva HN, Carvalho JG, Siqueira JO, Miranda JRP, Fernandes AR (2004) Absorção de nutrientes por mudas de ipê-roxo (Tabebuia impetiginosa (Mart.) Standl.) em solução nutritiva contaminada por cádmio. Rev Árvore 28:189–197CrossRefGoogle Scholar
  22. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39CrossRefPubMedGoogle Scholar
  23. Prasad MNV, Freitas HMO (2003) Metal hyperaccumalation in plants—biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:285–321CrossRefGoogle Scholar
  24. Sanitá di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130CrossRefGoogle Scholar
  25. Sass JE (1951) Botanical microtechnique. The Lowa State College Press, AmesGoogle Scholar
  26. Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365CrossRefPubMedGoogle Scholar
  27. Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidant systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiol 127:887–898CrossRefPubMedGoogle Scholar
  28. Severo MIG, Oliveira AH, Loustalot MFG, Carneiro CG, Mangabeira PA, Labejof L, Almeida MP, Veado MARV (2004) Inductively coupled plasma-mass spectrometry (HR-ICP-MS) as a tool for environment biomonitoring. Rev Fis Appl Instrum 17:7–11Google Scholar
  29. Soares CRFS, Siqueira JO, Carvalho JG, Moreira FMS (2005) Fitoxidez de cádmio para Eucalyptus maculata e E. urophylla em solução nutritiva. Rev Árvore 29:175–183Google Scholar
  30. Sridhar BBM, Diehl SV, Han FX, Monts DL, Su Y (2005) Anatomical changes due to uptake and accumulation of Zn and Cd in Indian mustard (Brassica juncea). Environ Exp Bot 54:131–141CrossRefGoogle Scholar
  31. Stell RGD, Torrie JH (1980) Principles and procedures of statistics. McGraw-Hill Book Company Inc., New YorkGoogle Scholar
  32. Travis AJ, Mansfield TA (1979) Stomatal responses to light and CO2 are dependent on KCI concentration. Plant Cell Environ 2:319–323CrossRefGoogle Scholar
  33. Vollenweider P, Cosio C, Günthardt-Goerg MS, Keller C (2006) Localization and effects of cadmium in leaves of a tolerant Salix viminalis L. Part II. Microlocalization and cellular effect of cadmium. Environ Exp Bot 58:25–40CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Vânia L. Souza
    • 1
  • Alex-Alan F. de Almeida
    • 2
    Email author
  • Stella G. C. Lima
    • 3
  • Júlio C. de M. Cascardo
    • 1
  • Delmira da C. Silva
    • 4
  • Pedro A. O. Mangabeira
    • 4
  • Fábio P. Gomes
    • 2
  1. 1.Laboratório de Genômica e Expressão GênicaDCB/UESCIlheusBrazil
  2. 2.Laboratório de Fisiologia VegetalDCB/UESCIlheusBrazil
  3. 3.Laboratório de Anatomia VegetalDCB/UESCIlheusBrazil
  4. 4.Laboratório de Microscopia EletrônicaDCB/UESCIlheusBrazil

Personalised recommendations