, Volume 23, Issue 6, pp 1113–1121 | Cite as

The effect of divalent cations on the catalytic activity of the human plasma 3′-exonuclease

  • Marzena Wojcik
  • Wojciech J. Stec


The 3′-exonuclease from human plasma is a soluble form of nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) (EC Here, the possibility of divalent cation influence for the 3′-exonuclease activity was investigated using the phosphorothioate congener of oligonucleotide containing all phosphorothioate internucleotide linkages of the [RP]-configuration ([RP-PS]-d[T12]) as the substrate for this enzyme. It was found that the 3′-exonuclease is a metalloenzyme, i.e. its phosphodiesterase activity was completely abolished at 0.8 mM concentration EDTA and, in turn, it was restored in the presence of Mg2+ or Mn2+ ions. In addition, Mg2+ can be replaced effectively by Ca2+, Mn2+, or Co2+, but not by Ni2+ and Cd2+ during the hydrolysis of the phosphorothioate substrate in human plasma. In addition, the mechanism is postulated, by which a single internucleotide phosphorothioate bond of the SP-configuration at the 3′-end of unmodified phosphodiesters (PO-oligos), or their phosporothioate analogs (PS-oligos) protects these compounds against degradation in blood.


The human plasma 3′-exonuclease NPP1 Catalysis Phosphorothioates 



The authors wish to thank Krzysztof Domanski for synthesis of the PS oligonucleotides 2 and 3. This study was supported by 502-17-692 project from Medical University of Łódź (to M.W.).


  1. Abaza MS, Al-Saffar A, Al-Sawan S, Al-Attiyah R (2008) c-myc antisense oligonucleotides sensitize human colorectal cancer cells to chemotherapeutic drugs. Tumour Biol 29:287–303. doi: 10.1159/000156706 CrossRefPubMedGoogle Scholar
  2. Bartlett PA, Eckstein F (1982) Stereochemical course of polymerization catalyzed by avian myeloblastosis virus reverse transcriptase. J Biol Chem 257:8879–8884PubMedGoogle Scholar
  3. Belli SI, Sali A, Goding JW (1994) Divalent cations stabilize the conformation of plasma cell membrane glycoprotein PC-1 (alkaline phosphodiesterase I). Biochem J 304:75–80PubMedGoogle Scholar
  4. Bollen M, Gijsbers R, Ceulemans H, Stalmans W, Stefan C (2000) Nucleotide pyrophosphatases/phosphodiesterases on the move. Crit Rev Biochem Mol Biol 35:393–432. doi: 10.1080/10409230091169249 CrossRefPubMedGoogle Scholar
  5. Bond MD, Holmquist B, Vallee BL (1986) Thioamide substrate probes of metal-substrate interactions in carboxypeptidase A catalysis. J Inorg Biochem 28:97–105CrossRefPubMedGoogle Scholar
  6. Brautigam CA, Steitz TA (1998) Structural principles for the inhibition of the 3′–5′ exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates. J Mol Biol 277:363–377. doi: 10.1006/jmbi.1997.1586 CrossRefPubMedGoogle Scholar
  7. Connolly BA, Eckstein F, Pingoud A (1984) The stereochemical course of the restriction endonuclease EcoRI- catalyzed reaction. J Biol Chem 259:10760–10763PubMedGoogle Scholar
  8. Cowan JA (1998) Metal activation of enzymes in nucleic acid biochemistry. Chem Rev 98:1067–1087CrossRefPubMedGoogle Scholar
  9. Duan RD, Bergman T, Xu N, Wu J, Cheng Y, Duan J, Nelander S, Palmberg C, Nilsson A (2003) Identification of human intestinal alkaline sphingomyelinase as a novel ecto-enzyme related to the nucleotide phosphodiesterase family. J Biol Chem 278:38528–38536. doi: 10.1074/jbc.M305437200 CrossRefPubMedGoogle Scholar
  10. Eckstein F, Armstrong VW, Sternbach H (1976) Stereochemistry of polymerization by DNA-dependent RNA- polymerase from Escherichia coli: an investigation with a diastereomeric ATP-analogue. Proc Natl Acad Sci USA 73:2987–2990CrossRefPubMedGoogle Scholar
  11. Eckstein F, Sternbach H, von der Haar F (1977) Stereochemistry of internucleotidic bond formation by tRNA nucleotidyltransferase from baker′s yeast. Biochemistry 16:3429–3432CrossRefPubMedGoogle Scholar
  12. Eckstein F, Burgers PM, Hunneman DH (1979) Stereochemistry of hydrolysis by snake venom phosphodiesterase. J Biol Chem 254:7476–7478PubMedGoogle Scholar
  13. Eder PS, DeVine RJ, Dagle JM, Walder JA (1991) Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3′-exonuclease in plasma. Antisense Res Dev 1:141–151PubMedGoogle Scholar
  14. Frey PA, Sammons RD (1985) Bond order and charge localization in nucleoside phosphorothioates. Science 228:541–545CrossRefPubMedGoogle Scholar
  15. Gijsbers R, Ceulemans H, Stalmans W, Bollen M (2001) Structural and catalytic similarities between nucleotide pyrophosphatases/phosphodiesterases and alkaline phosphatases. J Biol Chem 276:1361–1368. doi: 10.1074/jbc.M007552200 CrossRefPubMedGoogle Scholar
  16. Gilar M, Belenky A, Budman Y, Smisek DL, Cohen AS (1998) Impact of 3′-exonuclease stereoselectivity on the kinetics of phosphorothioate oligonucleotide metabolism. Antisense Nucleic Acids Drug Dev 8:35–42Google Scholar
  17. Goding JW, Grobben B, Slegers H (2003) Physiological and pathophysiological functions of the ectonucleotide pyrophosphatase/phosphodiesterase family. Biochim Biophys Acta 1638:1–19. doi: 10.1016/S0925-4439(03)00058-9 PubMedGoogle Scholar
  18. Grasby JA, Connolly BA (1992) Stereochemical outcome of the hydrolysis reaction catalyzed by the EcoRV restriction endonuclease. Biochemistry 31:7855–7861CrossRefPubMedGoogle Scholar
  19. Gupta AP, Benkovic SJ (1984) Stereochemical course of the 3′ → 5′ exonuclease activity of DNA polymerase. Biochemistry 23:5874–5881CrossRefPubMedGoogle Scholar
  20. Hoke GD, Draper K, Freier SM, Gonzalez C, Driver VB, Zounes MC, Ecker DJ (1991) Effects of phosphorothioate capping on antisense oligonucleotide stability, hybridization and antiviral efficacy versus herpes simplex virus infection. Nucleic Acids Res 19:5743–5748CrossRefPubMedGoogle Scholar
  21. Irwing H, Williams RJP (1953) The stability of transition metal complexes. J Chem Soc 3:3192–3210CrossRefGoogle Scholar
  22. Koziolkiewicz M, Wojcik M, Kobylanska A, Karwowski B, Rebowska B, Guga P, Stec WJ (1997) Stability of stereoregular oligo (nucleoside phosphorothioate)s in human plasma: diastereoselectivity of plasma 3′-exonuclease. Antisense Nucleic Acids Drug Dev 7:43–48Google Scholar
  23. Koziolkiewicz M, Gendaszewska E, Maszewska M, Stein CA, Stec WJ (2001) The mononucleotide-dependent, nonantisense mechanism of action of phosphodiester and phosphorothioate oligonucleotides depends upon the activity of an ecto-5′-nucleotidase. Blood 98:995–1002. doi: 10.1182/blood.V98.4.995 CrossRefPubMedGoogle Scholar
  24. Koziolkiewicz M, Owczarek A, Wojcik M, Domanski K, Guga P, Stec WJ (2002) Retention of configuration in the action of human plasma 3′-exonuclease on oligo (deoxynucleoside phosphorothioate). A new method for assignment of absolute configuration at phosphorus in isotopomeric deoxyadenosine 5′-O-[18O]-phosphorothioate. J Am Chem Soc 124:4623–4627. doi: 10.1021/ja017187u CrossRefPubMedGoogle Scholar
  25. Luganini A, Caposio P, Landolfo S, Gribaudo G (2008) Phosphorothioate-modified oligodeoxynucleotides inhibit human cytomegalovirus replication by blocking virus entry. Antimicrob Agents Chemother 52:1111–1120. doi: 10.1128/AAC.00987-07 CrossRefPubMedGoogle Scholar
  26. Nawrot B, Paul N, Rebowska B, Stec WJ (2008) Significance of stereochemistry of 3′-terminal phosphorothioate-modified primer in DNA polymerase-mediated chain extension. Mol Biotechnol 40:119–126. doi: 10.1007/s12033-008-9096-x CrossRefPubMedGoogle Scholar
  27. Oda Y, Kuo MD, Huang SS, Huang JS (1993) The major acidic fibroblast growth factor (aFGF)-stimulated phosphoprotein from bovine liver plasma membranes has aFGF-stimulated kinase, autoadenylylation, and alkaline nucleotide phosphodiesterase activities. J Biol Chem 268:27318–27326PubMedGoogle Scholar
  28. Orr GA, Simon J, Jones SR, Chin GJ, Knowles JR (1978) Adenosine 5′-O-([gamma-18O]gamma-thio)triphosphate chiral at the gamma-phosphorus: stereochemical consequences of reactions catalyzed by pyruvate kinase, glycerol kinase, and hexokinase. Proc Natl Acad Sci USA 75:2230–2233CrossRefPubMedGoogle Scholar
  29. Pearson RG (1968) Hard and soft acids and bases, HSAB, part I: fundamental principles. J Chem Educ 45:581–587CrossRefGoogle Scholar
  30. Rebbe NF, Tong BD, Finley EM, Hickman S (1991) Identification of nucleotide pyrophosphatase/alkaline phosphodiesterase I activity associated with the mouse plasma cell differentiation antigen PC-1. Proc Natl Acad Sci USA 88:5192–5196CrossRefPubMedGoogle Scholar
  31. Sakagami H, Aoki J, Natori Y, Nishikawa K, Kakehi Y, Natori Y, Arai H (2005) Biochemical and molecular characterization of a novel choline-specific glycerophosphodiester phosphodiesterase belonging to the nucleotide pyrophosphatase/phosphodiesterase family. J Biol Chem 280:23084–23093. doi: 10.1074/jbc.M413438200 CrossRefPubMedGoogle Scholar
  32. Sheu KF, Frey PA (1978) UDP-glucose pyrophosphorylase. Stereochemical course of the reaction of glucose 1- phosphate with uridine-5′ [1-thiotriphosphate]. J Biol Chem 253:3378–3380PubMedGoogle Scholar
  33. Stec WJ, Grajkowski A, Kobylanska A, Karwowski B, Koziolkiewicz M, Misiura K, Okruszek A, Wilk A, Guga P, Boczkowska M (1995) Diastereomers of nucleoside 3-O-2-thio-1.3.2 oxathia(selena)phospholanes): building blocks for stereocontrolled synthesis of oligo(nucleoside phosphorothioate)s. J Am Chem Soc 117:12020–12029CrossRefGoogle Scholar
  34. Stefan C, Jansen S, Bollen M (2005) NPP-type ecto-phosphodiesterases: unity in diversity. Trends Biochem Sci 30:542–550. doi: 10.1016/j.tibs.2005.08.005 CrossRefPubMedGoogle Scholar
  35. Stewart DJ, Donehower RC, Eisenhauer EA, Wainman N, Shah AK, Bonfils C, MacLeod AR, Besterman JM, Reid GK (2003) A phase I pharmacokinetic and pharmacodynamic study of the DNA methyltransferase 1 inhibitor MG98 administered twice weekly. Ann Oncol 14:766–774. doi: 10.1093/annonc/mdg216 CrossRefPubMedGoogle Scholar
  36. Vaerman JL, Moureau P, Deldime F, Lewalle P, Lammineur C, Morschhauser F, Martiat P (1997) Antisense oligodeoxyribonucleotides suppress hematologic cell growth through stepwise release of deoxyribonucleotides. Blood 90:331–339PubMedGoogle Scholar
  37. Wang S, Karbstein K, Peracchi A, Beigelman L, Herschlag D (1999) Identification of the hammerhead ribozyme metal ion binding site responsible for rescue of the deleterious effect of a cleavage site phosphorothioate. Biochemistry 38:14363–14378. doi: 10.1021/bi9913202 CrossRefPubMedGoogle Scholar
  38. Warnecke JM, Furste JP, Hardt WD, Erdmann VA, Hartmann RK (1996) Ribonuclease P (RNase P) RNA is converted to a Cd (2+)-ribozyme by a single RP-phosphorothioate modification in the precursor tRNA at the RNase P cleavage site. Proc Natl Acad Sci USA 93:8924–8928CrossRefPubMedGoogle Scholar
  39. Wojcik M, Cieslak M, Stec WJ, Goding JW, Koziolkiewicz M (2007) Nucleotide pyrophosphatase/phosphodiesterase 1 is responsible for degradation of antisense phosphorothioate oligonucleotides. Oligonucleotides 17:134–145. doi: 10.1089/oli.2007.0021 CrossRefPubMedGoogle Scholar
  40. Zhou DM, He QC, Zhou JM, Taira K (1998) Explanation by a putative triester-like mechanism for the thio effects and Mn2+ rescues in reactions catalyzed by a hammerhead ribozyme. FEBS Lett 431:154–160. doi: 10.1016/S0014-5793(98)00734-0 CrossRefPubMedGoogle Scholar
  41. Zon G, Stec WJ (1991) Phosphorothioate oligonucleotides. In: Eckstein F (ed) Oligonucleotides and analogues: a practical approach. IRL Press, Oxford, pp 87–108Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  1. 1.Department of Structural BiologyMedical University of ŁódźLodzPoland
  2. 2.Department of Bioorganic Chemistry, Center of Molecular and Macromolecular StudiesPolish Academy of SciencesLodzPoland

Personalised recommendations