, Volume 23, Issue 5, pp 823–855

Cadmium and transport of ions and substances across cell membranes and epithelia

  • Emmy Van Kerkhove
  • Valérie Pennemans
  • Quirine Swennen


Toxic metals such as cadmium (Cd2+) pose serious risks to human health. However, even though the importance of Cd2+ as environmental health hazards is now widely appreciated, the specific mechanisms by which it produces its adverse effects have yet to be fully elucidated. Cd2+ is known to enter cells, it binds and interacts with a multitude of molecules, it may indirectly induce oxidative stress and interfere with gene expression and repair of DNA. It also interacts with transport across cell membranes and epithelia and may therefore disturb the cell’s homeostasis and function. Interaction with epithelial transport, especially in the kidney and the liver, may have serious consequences in general health. A lot of research still needs to be done to understand the exact way in which Cd2+ interferes with these transport phenomena. It is not always clear whether Cd2+ has primary or secondary effects on cell membrane transport. In the present review we try to summarize the work that has been done up to now and to critically discuss the relevance of the experimental work in vitro with respect to the in vivo situation.


Na+K+-ATPase Ion channels Glucose Amino acids Organic anions and cations Endocytosis Epithelial junctions 



Basolateral membrane vesicles


Brushborder membrane vesicles












Fluorescein, methotrexate, fluorescent model substrate for Mrp2




Cadmium acetate


Epithelial Ca2+channel


Na+/Ca2+ exchanger


Inorganic phosphate


  1. Ahn DW, Park YS (1995) Transport of inorganic phosphate in renal cortical brush-border membrane vesicles of cadmium-intoxicated rats. Toxicol Appl Pharmacol 133:239–243PubMedCrossRefGoogle Scholar
  2. Ahn DW, Kim YM, Kim KR et al (1999) Cadmium binding and sodium-dependent solute transport in renal brush-border membrane vesicles. Toxicol Appl Pharmacol 154:212–218PubMedCrossRefGoogle Scholar
  3. Ahn DW, Chung JM, Kim JY et al (2005) Inhibition of renal Na +/H + exchange in cadmium-intoxicated rats. Toxicol Appl Pharmacol 204:91–98PubMedCrossRefGoogle Scholar
  4. Alberts B, Johnson A, Lewis J et al (eds) (2009) Molecular biology of the cell, 5th edn. Garland, New YorkGoogle Scholar
  5. Barbier O, Jacquillet G, Tauc M et al (2004) Acute study of interaction among cadmium, calcium, and zinc transport along the rat nephron in vivo. Am J Physiol Renal Physiol 287:F1067–F1075PubMedCrossRefGoogle Scholar
  6. Barriere H, Belfodil R, Rubera I et al (2003) Role of TASK2 potassium channels regarding volume regulation in primary cultures of mouse proximal tubules. J Gen Physiol 122:177–190PubMedCrossRefGoogle Scholar
  7. Bathula CS, Garrett SH, Zhou XD et al (2008) Cadmium, vectorial active transport, and Mt-3-dependent regulation of cadherin expression in human proximal tubular cells. Toxicol Sci 102:310–318PubMedCrossRefGoogle Scholar
  8. Bergeron M, Dubord L, Hausser C et al (1976) Membrane permeability as a cause of transport defects in experimental Fanconi syndrome. A new hypothesis. J Clin Invest 57:1181–1189Google Scholar
  9. Bernier J, Brousseau P, Krzystyniak K et al (1995) Immunotoxicity of heavy metals in relation to Great Lakes. Environ Health Perspect 103(Suppl 9):23–34PubMedCrossRefGoogle Scholar
  10. Bhattacharyya MH (2009) Cadmium osteotoxicity in experimental animals: mechanisms and relationship to human exposures. Toxicol Appl Pharmacol 238:258–265PubMedCrossRefGoogle Scholar
  11. Bhattacharyya MH, Whelton BD, Peterson DP et al (1988) Kidney changes in multiparous mice fed a nutrient-sufficient diet containing cadmium. Toxicology 50:205–215PubMedCrossRefGoogle Scholar
  12. Blumenthal SS, Lewand DL, Buday MA et al (1990) Cadmium inhibits glucose uptake in primary cultures of mouse cortical tubule cells. Am J Physiol 258:F1625–F1633PubMedGoogle Scholar
  13. Blumenthal SS, Ren L, Lewand DL et al (1998) Cadmium decreases SGLT1 messenger RNA in mouse kidney cells. Toxicol Appl Pharmacol 149:49–54PubMedCrossRefGoogle Scholar
  14. Boron WF, Boulpaep EL (eds) (2009) Medical Physiology, 2nd edn. Saunders Elsevier, PhiladelphiaGoogle Scholar
  15. Brenner BM, Levine SA (eds) (2008) Brenner & Rector’s The Kidney, 8th edn. Saunders Elsevier, PhiladelphiaGoogle Scholar
  16. Brousseau P, Pellerin J, Morin Y et al (2000) Flow cytometry as a tool to monitor the disturbance of phagocytosis in the clam Mya arenaria hemocytes following in vitro exposure to heavy metals. Toxicology 142:145–156PubMedCrossRefGoogle Scholar
  17. Bruscalupi G, Massimi M, Devirgiliis LC et al (2009) Multiple parameters are involved in the effects of cadmium on prenatal hepatocytes. Toxicol In Vitro 23:1311–1318PubMedCrossRefGoogle Scholar
  18. Brzoska MM, Rogalska J, Galazyn-Sidorczuk M et al (2007) Effect of zinc supplementation on bone metabolism in male rats chronically exposed to cadmium. Toxicology 237:89–103PubMedCrossRefGoogle Scholar
  19. Chen L, Jin T, Huang B et al (2006a) Critical exposure level of cadmium for elevated urinary metallothionein–an occupational population study in China. Toxicol Appl Pharmacol 215:93–99PubMedCrossRefGoogle Scholar
  20. Chen L, Lei L, Jin T et al (2006b) Plasma metallothionein antibody, urinary cadmium, and renal dysfunction in a Chinese type 2 diabetic population. Diabetes Care 29:2682–2687PubMedCrossRefGoogle Scholar
  21. Cheng TC, Sullivan JT (1984) Effects of heavy-metals on phagocytosis by molluscan hemocytes. Mar Environ Res 14:305–315CrossRefGoogle Scholar
  22. Chetty CS, Cooper A, Mcneil C et al (1992) The effects of cadmium invitro on adenosine-triphosphatase system and protection by thiol reagents in rat-brain microsomes. Arch Environ Contam Toxicol 22:456–458PubMedCrossRefGoogle Scholar
  23. Chin TA, Templeton DM (1992) Effects of CdCl2 and Cd-metallothionein on cultured mesangial cells. Toxicol Appl Pharmacol 116:133–141PubMedCrossRefGoogle Scholar
  24. Choi JS, Kim KR, Ahn DW et al (1999) Cadmium inhibits albumin endocytosis in opossum kidney epithelial cells. Toxicol Appl Pharmacol 161:146–152PubMedCrossRefGoogle Scholar
  25. Chung NP, Cheng CY (2001) Is cadmium chloride-induced inter-sertoli tight junction permeability barrier disruption a suitable in vitro model to study the events of junction disassembly during spermatogenesis in the rat testis? Endocrinology 142:1878–1888PubMedCrossRefGoogle Scholar
  26. Clarkson TW, Kench JE (1956) Urinary excretion of amino acids by men absorbing heavy metals. Biochem J 62:361–372PubMedGoogle Scholar
  27. DeCoursey TE, Cherny VV (2007) Pharmacology of voltage-gated proton channels. Curr Pharm Des 13:2400–2420PubMedGoogle Scholar
  28. Diaz GJ (2000) Basolateral and canalicular transport of xenobiotics in the hepatocyte: a review. Cytotechnology 34:225–235PubMedCrossRefGoogle Scholar
  29. Duizer E, Gilde AJ, Versantvoort CH et al (1999) Effects of cadmium chloride on the paracellular barrier function of intestinal epithelial cell lines. Toxicol Appl Pharmacol 155:117–126PubMedCrossRefGoogle Scholar
  30. Edwards JR, Prozialeck WC (2009) Cadmium, diabetes and chronic kidney disease. Toxicol Appl Pharmacol 238:289–293PubMedCrossRefGoogle Scholar
  31. Elinder CG, Friberg L, Lind B et al (1983) Lead and cadmium levels in blood samples from the general population of Sweden. Environ Res 30:233–253PubMedCrossRefGoogle Scholar
  32. Fanconi G (1936) Der fruhenfantile nephrotisch-glykosurische Zwergwuchs mit hypophostimischer Rachitis. Jahrb Kinderheilkd 147:229–338Google Scholar
  33. Faurskov B, Bjerregaard HF (1997) Effect of cadmium on active ion transport and cytotoxicity in cultured renal epithelial cells (A6). Toxicol In Vitro 11:717–722PubMedCrossRefGoogle Scholar
  34. Faurskov B, Bjerregaard HF (2000) Chloride secretion in kidney distal epithelial cells (A6) evoked by cadmium. Toxicol Appl Pharmacol 163:267–278PubMedCrossRefGoogle Scholar
  35. Faurskov B, Bjerregaard HF (2002) Evidence for cadmium mobilization of intracellular calcium through a divalent cation receptor in renal distal epithelial A6 cells. Pflugers Arch 445:40–50PubMedCrossRefGoogle Scholar
  36. Forster IC, Hernando N, Biber J et al (2006) Proximal tubular handling of phosphate: a molecular perspective. Kidney Int 70:1548–1559PubMedCrossRefGoogle Scholar
  37. Friberg L (1948) Proteinuria and kidney injury among workmen exposed to cadmium and nickel dust; preliminary report. J Ind Hyg Toxicol 30:32–36PubMedGoogle Scholar
  38. Friberg L (1950) Injuries following continued administration of cadmium; preliminary report of a clinical and experimental study. Arch Ind Hyg Occup Med 1:458–466PubMedGoogle Scholar
  39. Gachot B, Poujeol P (1992) Effects of cadmium and copper on zinc transport kinetics by isolated renal proximal cells. Biol Trace Elem Res 35:93–103PubMedCrossRefGoogle Scholar
  40. Gagnon E, Hontela A, Jumarie C (2007) Reciprocal inhibition of Cd and Ca uptake in isolated head kidney cells of rainbow trout (Oncorhynchus mykiss). Toxicol In Vitro 21:1077–1086PubMedCrossRefGoogle Scholar
  41. Galvez F, Franklin NM, Tuttle RB et al (2007) Interactions of waterborne and dietary cadmium on the expression of calcium transporters in the gills of rainbow trout: influence of dietary calcium supplementation. Aquat Toxicol 84:208–214PubMedCrossRefGoogle Scholar
  42. Gonick HC (2008) Nephrotoxicity of cadmium & lead. Indian J Med Res 128:335–352PubMedGoogle Scholar
  43. Hagos Y, Steffgen J, Rizwan AN et al (2006) Functional role of cationic amino acid residues in the sodium-dicarboxylate cotransporter 3 (NaDC-3) from winter flounder. Am J Physiol Renal Physiol 291:F1224–F1231PubMedCrossRefGoogle Scholar
  44. Han JC, Park SY, Hah BG et al (2003) Cadmium induces impaired glucose tolerance in rat by down-regulating GLUT4 expression in adipocytes. Arch Biochem Biophys 413:213–220PubMedCrossRefGoogle Scholar
  45. Hao C, Hao W, Wei X et al (2009) The role of MAPK in the biphasic dose-response phenomenon induced by cadmium and mercury in HEK293 cells. Toxicol In Vitro 23:660–666PubMedCrossRefGoogle Scholar
  46. Harrison SA, Buxton JM, Clancy BM et al (1991) Evidence that erythroid-type glucose transporter intrinsic activity is modulated by cadmium treatment of mouse 3T3–L1 cells. J Biol Chem 266:19438–19449PubMedGoogle Scholar
  47. Harvey B, Lacoste I, Ehrenfeld J (1991) Common channels for water and protons at apical and basolateral cell membranes of frog skin and urinary bladder epithelia. Effects of oxytocin, heavy metals, and inhibitors of H(+)-adenosine triphosphatase. J Gen Physiol 97:749–776PubMedCrossRefGoogle Scholar
  48. Hassler E, Lind B, Piscator M (1983) Cadmium in blood and urine related to present and past exposure. A study of workers in an alkaline battery factory. Br J Ind Med 40:420–425PubMedGoogle Scholar
  49. Hayashi Y, Kobayashi E, Okubo Y et al (2003) Excretion levels of urinary calcium and phosphorus among the inhabitants of Cd-polluted Kakehashi River basin of Japan. Biol Trace Elem Res 91:45–55PubMedCrossRefGoogle Scholar
  50. Hazen-Martin DJ, Sens DA, Blackburn JG et al (1989a) An electrophysiological freeze fracture assessment of cadmium nephrotoxicity in vitro. In Vitro Cell Dev Biol 25:791–799PubMedCrossRefGoogle Scholar
  51. Hazen-Martin DJ, Sens DA, Blackburn JG et al (1989b) Cadmium nephrotoxicity in human proximal tubule cell cultures. In Vitro Cell Dev Biol 25:784–790PubMedCrossRefGoogle Scholar
  52. Hazen-Martin DJ, Todd JH, Sens MA et al (1993) Electrical and freeze-fracture analysis of the effects of ionic cadmium on cell membranes of human proximal tubule cells. Environ Health Perspect 101:510–516PubMedCrossRefGoogle Scholar
  53. Herak-Kramberger CM, Spindler B, Biber J et al (1996) Renal type II Na/Pi-cotransporter is strongly impaired whereas the Na/sulphate-cotransporter and aquaporin 1 are unchanged in cadmium-treated rats. Pflugers Arch 432:336–344PubMedCrossRefGoogle Scholar
  54. Herak-Kramberger CM, Brown D, Sabolic I (1998) Cadmium inhibits vacuolar H+-ATPase and endocytosis in rat kidney cortex. Kidney Int 53:1713–1726PubMedCrossRefGoogle Scholar
  55. Hille B (ed) (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Inc., SunderlandGoogle Scholar
  56. Himeno S, Yanagiya T, Fujishiro H (2009) The role of zinc transporters in cadmium and manganese transport in mammalian cells. Biochimie 91:1218–1222PubMedCrossRefGoogle Scholar
  57. Hohage H, Mehrens T, Mergelsberg U et al (1998) Effects of extracellular cadmium on renal basolateral organic anion transport. Toxicol Lett 98:189–194PubMedCrossRefGoogle Scholar
  58. Honda R, Tsuritani I, Noborisaka Y et al (2003) Urinary cadmium excretion is correlated with calcaneal bone mass in Japanese women living in an urban area. Environ Res 91:63–70PubMedCrossRefGoogle Scholar
  59. Horiguchi H, Oguma E, Sasaki S et al (2005) Environmental exposure to cadmium at a level insufficient to induce renal tubular dysfunction does not affect bone density among female Japanese farmers. Environ Res 97:83–92PubMedCrossRefGoogle Scholar
  60. Hung YM, Chung HM (2004) Acute self-poisoning by ingestion of cadmium and barium. Nephrol Dial Transplant 19:1308–1309PubMedCrossRefGoogle Scholar
  61. Jacquillet G, Barbier O, Cougnon M et al (2006) Zinc protects renal function during cadmium intoxication in the rat. Am J Physiol Renal Physiol 290:F127–F137PubMedCrossRefGoogle Scholar
  62. Janecki A, Jakubowiak A, Steinberger A (1992) Effect of cadmium chloride on transepithelial electrical resistance of Sertoli cell monolayers in two-compartment cultures–a new model for toxicological investigations of the “blood-testis” barrier in vitro. Toxicol Appl Pharmacol 112:51–57PubMedCrossRefGoogle Scholar
  63. Jeon SH, Cho MH, Cho JH (2001) Effects of cadmium on gap junctional intercellular communication in WB-F344 rat liver epithelial cells. Hum Exp Toxicol 20:577–583PubMedCrossRefGoogle Scholar
  64. Jolling K (2008) Chronic exposure of mice to cadmium: toxic effects on the renal proximal tubule. Biomedical Sciences, Universiteit Hasselt, HasseltGoogle Scholar
  65. Jungwirth A, Paulmichl M, Lang F (1990) Cadmium enhances potassium conductance in cultured renal epitheloid (MDCK) cells. Kidney Int 37:1477–1486PubMedCrossRefGoogle Scholar
  66. Kaur J, Sharma N, Attri S et al (2006) Kinetic characterization of Zinc transport process and its inhibition by Cadmium in isolated rat renal basolateral membrane vesicles: in vitro and in vivo studies. Mol Cell Biochem 283:169–179PubMedCrossRefGoogle Scholar
  67. Kim KR, Park YS (1995) Phlorhizin binding to renal outer cortical brush-border membranes of cadmium-injected rabbits. Toxicol Appl Pharmacol 133:244–248PubMedCrossRefGoogle Scholar
  68. Kim YK, Choi JK, Kim JS et al (1988) Changes in renal function in cadmium-intoxicated rats. Pharmacol Toxicol 63:342–350PubMedCrossRefGoogle Scholar
  69. Kim KR, Lee HY, Kim CK et al (1990) Alteration of renal amino-acid-transport system in cadmium-intoxicated rats. Toxicol Appl Pharmacol 106:102–111PubMedCrossRefGoogle Scholar
  70. Kim KR, Kim GC, Choi JS et al (1998) Renal transport systems for organic anions and cations in cadmium-exposed rats. Toxicol Appl Pharmacol 149:144–149PubMedCrossRefGoogle Scholar
  71. Kim KR, Ahn DW, Choi JS et al (1999) Effect of cadmium on protein endocytosis in renal epithelial cells. Kidney Int 55:1597CrossRefGoogle Scholar
  72. Kim D, Garrett SH, Sens MA et al (2002) Metallothionein isoform 3 and proximal tubule vectorial active transport. Kidney Int 61:464–472PubMedCrossRefGoogle Scholar
  73. Kinne RK, Schutz H, Kinne-Saffran E (1995) The effect of cadmium chloride in vitro on sodium-glutamate cotransport in brush border membrane vesicles isolated from rabbit kidney. Toxicol Appl Pharmacol 135:216–221PubMedCrossRefGoogle Scholar
  74. Kinne-Saffran E, Hulseweh M, Pfaff C et al (1993) Inhibition of Na, K-ATPase by cadmium: different mechanisms in different species. Toxicol Appl Pharmacol 121:22–29PubMedCrossRefGoogle Scholar
  75. Kiss T, Osipenko ON (1994) Toxic effects of heavy metals on ionic channels. Pharmacol Rev 46:245–267PubMedGoogle Scholar
  76. L’Hoste S, Chargui A, Belfodil R et al (2009) CFTR mediates cadmium-induced apoptosis through modulation of ROS level in mouse proximal tubule cells. Free Radic Biol Med 46:1017–1031PubMedCrossRefGoogle Scholar
  77. Lacroix A, Hontela A (2004) A comparative assessment of the adrenotoxic effects of cadmium in two teleost species, rainbow trout, Oncorhynchus mykiss, and yellow perch, Perca flavescens. Aquat Toxicol 67:13–21PubMedCrossRefGoogle Scholar
  78. Lee HY, Kim KR, Woo JS et al (1990) Transport of organic compounds in renal plasma membrane vesicles of cadmium intoxicated rats. Kidney Int 37:727–735PubMedCrossRefGoogle Scholar
  79. Lee HY, Kim KR, Park YS (1991) Transport kinetics of glucose and alanine in renal brush-border membrane vesicles of cadmium-intoxicated rabbits. Pharmacol Toxicol 69:390–395PubMedCrossRefGoogle Scholar
  80. Leffler PE, Jin T, Nordberg GF (2000) Differential calcium transport disturbances in renal membrane vesicles after cadmium-metallothionein injection in rats. Toxicology 143:227–234PubMedCrossRefGoogle Scholar
  81. Lin FJ, Fitzpatrick JW, Iannotti CA et al (1997) Effects of cadmium on trophoblast calcium transport. Placenta 18:341–356PubMedCrossRefGoogle Scholar
  82. Lionetto MG, Maffia M, Cappello MS et al (1998) Effect of cadmium on carbonic anhydrase and Na+-K+-ATPase in eel, Anguilla anguilla, intestine and gills. Comp Biochem Physiol A Mol Integr Physiol 120:89–91CrossRefGoogle Scholar
  83. Markovich D, James KM (1999) Heavy metals mercury, cadmium, and chromium inhibit the activity of the mammalian liver and kidney sulfate transporter sat-1. Toxicol Appl Pharmacol 154:181–187PubMedCrossRefGoogle Scholar
  84. Markovich D, Knight D (1998) Renal Na–Si cotransporter NaSi-1 is inhibited by heavy metals. Am J Physiol 274:F283–F289PubMedGoogle Scholar
  85. Min KS, Ohyanagi N, Ohta M et al (1995) Effect of erythropoiesis on splenic cadmium-metallothionein level following an injection of CdCl2 in mice. Toxicol Appl Pharmacol 134:235–240PubMedCrossRefGoogle Scholar
  86. Modi HR, Patil N, Katyare SS (2008) Effect of treatment with cadmium on kinetic properties of Na(+), K(+)-ATPase and glucose-6-phosphatase activity in rat liver microsomes a correlative study on influence of lipid/phospholipid make-up. Toxicology 254:29–41PubMedCrossRefGoogle Scholar
  87. Moulis J (2010) Mechanisms of cadmium toxicity in connection with the homeostasis of zinc and other metals. Biometals Special Issue on CadmiumGoogle Scholar
  88. Murer H, Hernando N, Forster I et al (2000) Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 80:1373–1409PubMedGoogle Scholar
  89. Nawrot TS, Van Hecke E, Thijs L et al (2008) Cadmium-related mortality and long-term secular trends in the cadmium body burden of an environmentally exposed population. Environ Health Perspect 116:1620–1628PubMedCrossRefGoogle Scholar
  90. Nechay BR, Saunders JP (1977) Inhibition of Renal Adenosine-Triphosphatase by Cadmium. J Pharmacol Exp Ther 200:623–629PubMedGoogle Scholar
  91. Nelson WJ, Shore EM, Wang AZ et al (1990) Identification of a membrane-cytoskeletal complex containing the cell adhesion molecule uvomorulin (E-cadherin), ankyrin, and fodrin in Madin-Darby canine kidney epithelial cells. J Cell Biol 110:349–357PubMedCrossRefGoogle Scholar
  92. Nesovic-Ostojic J, Cemerikic D, Dragovic S et al (2008) Low micromolar concentrations of cadmium and mercury ions activate peritubular membrane K + conductance in proximal tubular cells of frog kidney. Comp Biochem Physiol A Mol Integr Physiol 149:267–274PubMedCrossRefGoogle Scholar
  93. Niewenhuis RJ, Dimitriu C, Prozialeck WC (1997) Ultrastructural characterization of the early changes in intercellular junctions in response to cadmium (Cd2 +) exposure in LLC-PK1 cells. Toxicol Appl Pharmacol 142:1–12PubMedCrossRefGoogle Scholar
  94. Nishijo M, Satarug S, Honda R et al (2004) The gender differences in health effects of environmental cadmium exposure and potential mechanisms. Mol Cell Biochem 255:87–92PubMedCrossRefGoogle Scholar
  95. Nordberg GF (2009) Historical perspectives on cadmium toxicology. Toxicol Appl Pharmacol 238:192–200PubMedCrossRefGoogle Scholar
  96. Nordberg GF, Piscator M, Nordberg M (1971) Distribution of Cadmium in blood. Acta Pharmacol Toxicol 30:289–295Google Scholar
  97. Olsson IM, Bensryd I, Lundh T et al (2002) Cadmium in blood and urine—impact of sex, age, dietary intake, iron status, and former smoking—association of renal effects. Environ Health Perspect 110:1185–1190PubMedCrossRefGoogle Scholar
  98. Park K, Kim KR, Kim JY et al (1997) Effect of cadmium on Na–Pi cotransport kinetics in rabbit renal brush-border membrane vesicles. Toxicol Appl Pharmacol 145:255–259PubMedCrossRefGoogle Scholar
  99. Park CS, Kim OS, Yun SM et al (2008) Presenilin 1/gamma-secretase is associated with cadmium-induced E-cadherin cleavage and COX-2 gene expression in T47D breast cancer cells. Toxicol Sci 106:413–422PubMedCrossRefGoogle Scholar
  100. Pearson CA, Lamar PC, Prozialeck WC (2003) Effects of cadmium on E-cadherin and VE-cadherin in mouse lung. Life Sci 72:1303–1320PubMedCrossRefGoogle Scholar
  101. Petersson Grawe K, Oskarsson A (2000) Cadmium in milk and mammary gland in rats and mice. Arch Toxicol 73:519–527PubMedCrossRefGoogle Scholar
  102. Plakidou-Dymock S, Tanner MJ, McGivan JD (1994) Regulation of System B0 amino-acid-transport activity in the renal epithelial cell line NBL-1 and concomitant changes in SAAT1 hybridizing transcripts. Biochem J 301(Pt 2):399–405PubMedGoogle Scholar
  103. Prozialeck WC (2000) Evidence that E-cadherin may be a target for cadmium toxicity in epithelial cells. Toxicol Appl Pharmacol 164:231–249PubMedCrossRefGoogle Scholar
  104. Prozialeck WC, Lamar PC (1993) Surface binding and uptake of cadmium (Cd2+) by Llc-Pk1 cells on permeable membrane supports. Arch Toxicol 67:113–119PubMedCrossRefGoogle Scholar
  105. Prozialeck WC, Lamar PC (1997) Cadmium (Cd2 +) disrupts E-cadherin-dependent cell–cell junctions in MDCK cells. In Vitro Cell Dev Biol Anim 33:516–526PubMedCrossRefGoogle Scholar
  106. Prozialeck WC, Lamar PC (1999) Interaction of cadmium (Cd2 +) with a 13-residue polypeptide analog of a putative calcium-binding motif of E-cadherin. Biochim Biophys Acta-Mol Cell Res 1451:93–100CrossRefGoogle Scholar
  107. Prozialeck WC, Niewenhuis RJ (1991a) Cadmium (Cd2+) disrupts Ca(2+)-dependent cell–cell junctions and alters the pattern of E-cadherin immunofluorescence in LLC-PK1 cells. Biochem Biophys Res Commun 181:1118–1124PubMedCrossRefGoogle Scholar
  108. Prozialeck WC, Niewenhuis RJ (1991b) Cadmium (Cd2+) disrupts intercellular junctions and actin filaments in LLC-PK1 cells. Toxicol Appl Pharmacol 107:81–97PubMedCrossRefGoogle Scholar
  109. Prozialeck WC, Wellington DR, Lamar PC (1993) Comparison of the cytotoxic effects of cadmium chloride and cadmium-metallothionein in Llc-Pk1 cells. Life Sci 53:Pl337–Pl342PubMedCrossRefGoogle Scholar
  110. Prozialeck WC, Wellington DR, Mosher TL et al (1995) The cadmium-induced disruption of tight junctions in LLC-PK1 cells does not result from apoptosis. Life Sci 57:PL199–PL204PubMedCrossRefGoogle Scholar
  111. Prozialeck WC, Lamar PC, Ikura M (1996) Binding of cadmium (Cd2+) to E-CAD1, a calcium-binding polypeptide analog of E-cadherin. Life Sci 58:PL325–PL330Google Scholar
  112. Prozialeck WC, Lamar PC, Lynch SM (2003) Cadmium alters the localization of N-cadherin, E-cadherin, and beta-catenin in the proximal tubule epithelium. Toxicol Appl Pharmacol 189:180–195PubMedCrossRefGoogle Scholar
  113. Reuss L, Wills NK, Lewis SA (1996) Epithelial transport proteins. In: Wills SA, Reuss L, Lewis SA (eds) Epithelial transport: a guide to methods and experimental analysis. Chapman & Hall, LondonGoogle Scholar
  114. Sabolic I, Brown D, Verbavatz JM et al (1994) H + -Atpases of Renal Cortical and Medullary Endosomes Are Differentially Sensitive to Sch-28080 and Omeprazole. Am J Physiol 266:F868–F877PubMedGoogle Scholar
  115. Sabolic I, Ljubojevic M, Herak-Kramberger CM et al (2002) Cd-Mt causes endocytosis of brush-border transporters in rat renal proximal tubules. Am J Physiol Renal Physiol 283:F1389–F1402PubMedGoogle Scholar
  116. Sabolic I, Herak-Kramberger CM, Antolovic R et al (2006) Loss of basolateral invaginations, in proximal tubules of cadmium-intoxicated rats is independent of microtubules and clathrin. Toxicology 218:149–163PubMedCrossRefGoogle Scholar
  117. Sauve S, Brousseau P, Pellerin J et al (2002a) Phagocytic activity of marine and freshwater bivalves: in vitro exposure of hemocytes to metals (Ag, Cd, Hg and Zn). Aquat Toxicol 58:189–200PubMedCrossRefGoogle Scholar
  118. Sauve S, Hendawi M, Brousseau P et al (2002b) Phagocytic response of terrestrial and aquatic invertebrates following in vitro exposure to trace elements. Ecotoxicol Environ Saf 52:21–29PubMedCrossRefGoogle Scholar
  119. Schoenmakers TJ, Klaren PH, Flik G et al (1992) Actions of cadmium on basolateral plasma membrane proteins involved in calcium uptake by fish intestine. J Membr Biol 127:161–172PubMedGoogle Scholar
  120. Schutte R, Nawrot TS, Richart T et al (2008) Bone resorption and environmental exposure to cadmium in women: a population study. Environ Health Perspect 116:777–783PubMedCrossRefGoogle Scholar
  121. Seiffert (1897) Diseases in zinc smelter workers and hygienic precautions taken. Dtsch Vierteljahrschr Offentl Gesundh pfl. 29, 419 (In German)Google Scholar
  122. Shemarova IV, Maizel’ EB, Khovanskikh AE (2000) Comparative study of effects of cadmium cations in free and chelated forms on activity of glutathione S-transferase, growth, and endocytosis in culture of the infusorium Tetrahymena pyriformis. J Evol Biochem Physiol 36:111–117CrossRefGoogle Scholar
  123. Souza V, Bucio L, Jay D et al (1996) Effect of cadmium on calcium transport in a human fetal hepatic cell line (WRL-68 cells). Toxicology 112:97–104PubMedCrossRefGoogle Scholar
  124. Staessen JA, Lauwerys RR, Ide G et al (1994) Renal function and historical environmental cadmium pollution from zinc smelters. Lancet 343:1523–1527PubMedCrossRefGoogle Scholar
  125. Suzuki CA, Cherian MG (1988) Effects of cadmium-metallothionein on renal organic ion transport and lipid peroxidation in rats. J Biochem Toxicol 3:11–20PubMedCrossRefGoogle Scholar
  126. Tabatabai NM, Blumenthal SS, Lewand DL et al (2001) Differential regulation of mouse kidney sodium-dependent transporters mRNA by cadmium. Toxicol Appl Pharmacol 177:163–173PubMedCrossRefGoogle Scholar
  127. Tabatabai NM, Blumenthal SS, Lewand DL et al (2003) Mouse kidney expresses mRNA of four highly related sodium-glucose cotransporters: regulation by cadmium. Kidney Int 64:1320–1330PubMedCrossRefGoogle Scholar
  128. Tabatabai NM, Blumenthal SS, Petering DH (2005) Adverse effect of cadmium on binding of transcription factor Sp1 to the GC-rich regions of the mouse sodium-glucose cotransporter 1, SGLT1, promoter. Toxicology 207:369–382PubMedCrossRefGoogle Scholar
  129. Takeichi M (1990) Cadherins—a molecular family important in selective cell–cell adhesion. Annu Rev Biochem 59:237–252PubMedCrossRefGoogle Scholar
  130. Templeton DM (1990) Cadmium uptake by cells of renal origin. J Biol Chem 265:21764–21770PubMedGoogle Scholar
  131. Terlouw SA, Graeff C, Smeets PH et al (2002) Short- and long-term influences of heavy metals on anionic drug efflux from renal proximal tubule. J Pharmacol Exp Ther 301:578–585PubMedCrossRefGoogle Scholar
  132. Thévenod F (2003) Nephrotoxicity and the proximal tubule. Insights from cadmium. Nephron Physiol 93:87–93CrossRefGoogle Scholar
  133. Thévenod F (2010) Novel aspects of cadmium transport in mammalian cells: catch me if you can! Biometals (Special Issue on Cadmium)Google Scholar
  134. Thévenod F, Friedmann JM (1999) Cadmium-mediated oxidative stress in kidney proximal tubule cells induces degradation of Na+/K+-ATPase through proteasomal and endo-/lysosomal proteolytic pathways. Faseb J 13:1751–1761PubMedGoogle Scholar
  135. Thévenod F, Jones SW (1992) Cadmium block of calcium current in frog sympathetic neurons. Biophys J 63:162–168PubMedCrossRefGoogle Scholar
  136. Thévenod F, Friedmann JM, Katsen AD et al (2000) Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kappaB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis. J Biol Chem 275:1887–1896PubMedCrossRefGoogle Scholar
  137. Thijssen S, Cuypers A, Maringwa J et al (2007a) Low cadmium exposure triggers a biphasic oxidative stress response in mice kidneys. Toxicology 236:29–41PubMedCrossRefGoogle Scholar
  138. Thijssen S, Maringwa J, Faes C et al (2007b) Chronic exposure of mice to environmentally relevant, low doses of cadmium leads to early renal damage, not predicted by blood or urine cadmium levels. Toxicology 229:145–156PubMedCrossRefGoogle Scholar
  139. Tsuruoka S, Sugimoto K, Muto S et al (2000) Acute effect of cadmium-metallothionein on glucose and amino acid transport across the apical membrane of the rabbit proximal tubule perfused in vitro. J Pharmacol Exp Ther 292:769–777PubMedGoogle Scholar
  140. Tsuruoka S, Swenson ER, Fujimura A et al (2008) Mechanism of Cd-induced inhibition of Na-glucose cotransporter in rabbit proximal tubule cells: roles of luminal pH and membrane-bound carbonic anhydrase. Nephron Physiol 110:11–20CrossRefGoogle Scholar
  141. Vander AJ (1963) Effects of zinc, cadmium, and mercury on renal transport systems. Am J Physiol 204:781–784PubMedGoogle Scholar
  142. Vennekens R, Prenen J, Hoenderop JG et al (2001) Pore properties and ionic block of the rabbit epithelial calcium channel expressed in HEK 293 cells. J Physiol 530:183–191PubMedCrossRefGoogle Scholar
  143. Verbost PM, Flik G, Lock RAC et al (1987a) Cadmium inhibition of Ca-2+ uptake in rainbow-trout gills. Am J Physiol 253:R216–R221PubMedGoogle Scholar
  144. Verbost PM, Senden MHMN, Vanos CH (1987b) Nanomolar concentrations of Cd-2+ inhibit Ca-2+ transport-systems in plasma-membranes and intracellular Ca-2+ stores in intestinal epithelium. Biochim Biophys Acta 902:247–252PubMedCrossRefGoogle Scholar
  145. Verbost PM, Flik G, Lock RA et al (1988) Cadmium inhibits plasma membrane calcium transport. J Membr Biol 102:97–104PubMedCrossRefGoogle Scholar
  146. Verbost PM, Flik G, Pang PK et al (1989) Cadmium inhibition of the erythrocyte Ca2+ pump. A molecular interpretation. J Biol Chem 264:5613–5615PubMedGoogle Scholar
  147. von Zglinicki T, Edwall C, Ostlund E et al (1992) Very low cadmium concentrations stimulate DNA synthesis and cell growth. J Cell Sci 103(Pt 4):1073–1081PubMedGoogle Scholar
  148. Wagner CA, Waldegger S, Osswald H et al (1996) Heavy metals inhibit P-i-induced currents through human brush-border NaPi-3 cotransporter in Xenopus oocytes. Am J Physiol Renal Physiol 40:F926–F930Google Scholar
  149. Wagner CA, Finberg KE, Breton S et al (2004) Renal vacuolar H + -ATPase. Physiol Rev 84:1263–1314PubMedCrossRefGoogle Scholar
  150. Wang L, Cao J, Chen D et al (2009) Role of oxidative stress, apoptosis, and intracellular homeostasis in primary cultures of rat proximal tubular cells exposed to cadmium. Biol Trace Elem Res 127:53–68PubMedCrossRefGoogle Scholar
  151. Weidner WJ, Waddell DS, Sillman AJ (2000) Low levels of cadmium chloride alter the immunoprecipitation of corneal cadherin-complex proteins. Arch Toxicol 74:578–581PubMedCrossRefGoogle Scholar
  152. Zimmerhackl LB, Momm F, Wiegele G et al (1998) Cadmium is more toxic to LLC-PK1 cells than to MDCK cells acting on the cadherin–catenin complex. Am J Physiol 275:F143–F153PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Emmy Van Kerkhove
    • 1
  • Valérie Pennemans
    • 1
  • Quirine Swennen
    • 1
  1. 1.Department of Physiology, Faculty of Medicine, Centre for Environmental SciencesHasselt UniversityDiepenbeekBelgium

Personalised recommendations