, Volume 23, Issue 5, pp 897–926 | Cite as

Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs

  • Ivan SabolićEmail author
  • Davorka Breljak
  • Mario Škarica
  • Carol M. Herak-Kramberger


Metallothioneins are cysteine-rich, small metal-binding proteins present in various mammalian tissues. Of the four common metallothioneins, MT-1 and MT-2 (MTs) are expressed in most tissues, MT-3 is predominantly present in brain, whereas MT-4 is restricted to the squamous epithelia. The expression of MT-1 and MT-2 in some organs exhibits sex, age, and strain differences, and inducibility with a variety of stimuli. In adult mammals, MTs have been localized largely in the cell cytoplasm, but also in lysosomes, mitochondria and nuclei. The major physiological functions of MTs include homeostasis of essential metals Zn and Cu, protection against cytotoxicity of Cd and other toxic metals, and scavenging free radicals generated in oxidative stress. The role of MTs in Cd-induced acute and chronic toxicity, particularly in liver and kidneys, is reviewed in more details. In acute toxicity, liver is the primary target, whereas in chronic toxicity, kidneys are major targets of Cd. The intracellular MTs bind Cd ions and form CdMT. In chronic intoxication, Cd stimulates de novo synthesis of MTs; it is assumed that toxicity in the cells starts when loading with Cd ions exceeds the buffering capacity of intracellular MTs. CdMT, released from the Cd-injured organs, or when applied parenterally for experimental purposes, reaches the kidneys via circulation, where it is filtered, endocytosed in the proximal tubule cells, and degraded in lysosomes. Liberated Cd can immediately affect the cell structures and functions. The resulting proteinuria and CdMT in the urine can be used as biomarkers of tubular injury.


Antioxidants Heavy metals Hepatotoxicity Nephrotoxicity Oxidative stress Reactive oxygen species Urine metallothionein 



Metallothionein protein not complexed with metal


Brush-border membrane


Basolateral membrane


Divalent metal transporter 1


Growth inhibitory factor (MT-3)


Reduced glutathione


Oxidized glutathione




Metalloregulatory transcription factor 1

MT-null mice

MT-1 and MT-2 knock out mice


Organic anion transporter


Proximal tubules


Response element


Reactive nitrogen species


Reactive oxygen species


CdMT or CuMT, metallothionein complexed with Zn, Cd or Cu, respectively



The authors thank Mrs. Eva Heršak for technical assistance in performing experiments. This work was supported by grant 022-0222148-2146 from Ministry for Science, Education and Sports, Republic of Croatia (I.S.).


  1. Abouhamed M, Gburek J, Liu W et al (2006) Divalent metal transporter 1 in the kidney proximal tubule is expressed in late endosomes/lysosomal membranes: implications for renal handling of protein-metal complexes. Am J Physiol Renal Physiol 290:F1525–F1533PubMedCrossRefGoogle Scholar
  2. Abouhamed M, Wolff NA, Lee WK et al (2007) Knockdown of endosomal/lysosomal divalent metal transporter 1 by RNA interference prevents cadmium-metallothionein-1 cytotoxicity in renal proximal tubule cells. Am J Physiol Renal Physiol 293:F705–F712PubMedCrossRefGoogle Scholar
  3. Ǻkesson A, Berglund M, Schütz A et al (2002) Cadmium exposure in pregnancy and lactation in relation to iron status. Am J Public Health 92:284–287PubMedCrossRefGoogle Scholar
  4. Andrews GK (2000) Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol 59:95–104PubMedCrossRefGoogle Scholar
  5. Andrews GK, Adamson ED, Gedamu L (1984) The ontogeny of expression of murine metallothionein: comparison with the alpha-fetoprotein gene. Dev Biol 103:294–303PubMedCrossRefGoogle Scholar
  6. Aschner M, West AK (2005) The role of MT in neurological disorders. J Alzheimers Dis 8:139–145PubMedGoogle Scholar
  7. Aschner M, Cherian MG, Klaassen CD et al (1997) Metallothioneins in brain—the role in physiology and pathology. Toxicol Appl Pharmacol 142:229–242PubMedCrossRefGoogle Scholar
  8. Baker TK, VanVooren HB, Smith WC et al (2003) Involvement of calcium channels in the sexual dimorphism of cadmium-induced hepatotoxicity. Toxicol Lett 137:185–192PubMedCrossRefGoogle Scholar
  9. Bergendi L, Benes L, Durackova Z et al (1999) Chemistry, physiology and pathology of free radicals. Life Sci 65:1865–1874PubMedCrossRefGoogle Scholar
  10. Berglund M, Ǻkesson A, Nermell B et al (1994) Intestinal absorption of dietary cadmium in women depends on body iron stores and fiber intake. Environ Health Perspect 102:1058–1066PubMedCrossRefGoogle Scholar
  11. Bhattacharyya MH (2009) Cadmium osteotoxicity in experimental animals: mechanisms and relationship to human exposures. Toxicol Appl Pharmacol 238:258–265PubMedCrossRefGoogle Scholar
  12. Bittel D, Dalton T, Samson SLA et al (1998) The DNA binding activity of metal response element-binding transcriptional factor-1 is activated in vivo and in vitro by Zn, but not by other transition metals. J Biol Chem 273:7127–7133PubMedCrossRefGoogle Scholar
  13. Blazka ME, Shaikh ZA (1991) Sex differences in hepatic and renal cadmium accumulation and metallothionein induction. Role of estradiol. Biochem Pharmacol 41:775–780PubMedCrossRefGoogle Scholar
  14. Blazka ME, Nolan CV, Shaikh ZA (1988) Developmental and sex differences in cadmium distribution and metallothionein induction and localization. J Appl Toxicol 8:217–222PubMedCrossRefGoogle Scholar
  15. Bobillier-Chaumont S, Maupoil V, Berthelot A (2006) Metallothionein induction in the liver, kidney, heart and aorta of cadmium and isoproterenol treated rats. J Appl Toxicol 26:47–55PubMedCrossRefGoogle Scholar
  16. Bremner I (1987) Involvement of metallothionein in the hepatic metabolism of copper. J Nutr 117:19–29PubMedGoogle Scholar
  17. Bridges CC, Zalups RK (2005) Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol 204:274–308PubMedCrossRefGoogle Scholar
  18. Brookes PS, Yoon Y, Robotham JL et al (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–C833PubMedCrossRefGoogle Scholar
  19. Casalino E, Sblano C, Landriscina C (1997) Enzyme activity alteration by cadmium administration to rats: the possibility of iron involvement in lipid peroxidation. Arch Biochem Biophys 346:171–179PubMedCrossRefGoogle Scholar
  20. Chan HM, Cherian MG (1993) Ontogenic changes in hepatic metallothionein isoforms in prenatal and newborn rats. Biochem Cell Biol 71:133–140PubMedCrossRefGoogle Scholar
  21. Chan HM, Zhu LF, Zhong R et al (1993) Nephrotoxicity in rats following liver transplantation from cadmium-exposed rats. Toxicol Appl Pharmacol 123:89–96PubMedCrossRefGoogle Scholar
  22. Chang X, Jin T, Chen L et al (2009) Metallothionein I isoform mRNA expression in peripheral lymphocytes as a biomarker for occupational cadmium exposure. Exp Biol Med 234:666–672CrossRefGoogle Scholar
  23. Chen H, Carlson EC, Pellet L et al (2001) Overexpression of metallothionein in pancreatic beta cells reduces streptozotocin-induced DNA damage and diabetes. Diabetes 50:2040–2046PubMedCrossRefGoogle Scholar
  24. Chen L, Jin T, Huang R et al (2006a) Plasma metallothionein antibody and cadmium-induced renal dysfunction in an occupational population in China. Toxicol Sci 91:104–112PubMedCrossRefGoogle Scholar
  25. Chen L, Jin T, Huang B et al (2006b) Critical exposure level of cadmium for elevated urinary metallothionein–an occupational population study in China. Toxicol Appl Pharmacol 215:93–99PubMedCrossRefGoogle Scholar
  26. Chen L, Lei L, Jin T et al (2006c) Plasma metallothionein antibody, urinary cadmium, and renal dysfunction in a Chinese type 2 diabetic population. Diabetes Care 29:2682–2687PubMedCrossRefGoogle Scholar
  27. Cherian MG (1979) Metabolism of orally administered cadmium-metallothionein in mice. Environ Health Perspect 28:127–130PubMedCrossRefGoogle Scholar
  28. Cherian MG (1983) Absorption and tissue distribution of cadmium in mice after chronic feeding with cadmium chloride and cadmium-metallothionein. Bull Environm Contam Toxicol 30:33–36CrossRefGoogle Scholar
  29. Cherian MG (1994) The significance of the nuclear and cytoplasmic localization of metallothionein in human liver and tumor cells. Environ Health Perspect 102(Suppl. 3):131–135PubMedCrossRefGoogle Scholar
  30. Cherian MG, Apostolova MD (2000) Nuclear localization of metallothionein during cell proliferation and differentiation. Cell Molec Biol 46:347–356Google Scholar
  31. Cherian MG, Kang YJ (2006) Metallothionein and liver regeneration. Exp Biol Med 231:138–144Google Scholar
  32. Cherian MG, Goyer RA, Delaquerriere-Richardson L (1976) Cadmium-metallothionein-induced nephropathy. Toxicol Appl Pharmacol 38:399–408PubMedCrossRefGoogle Scholar
  33. Cherian MG, Goyer RA, Valberg LS (1978) Gastrointestinal absorption and organ distribution of oral cadmium chloride and cadmium-metallothioneine in mice. J Toxicol Environ Health 4:861–868PubMedCrossRefGoogle Scholar
  34. Childers M, Eckel G, Himmel A et al (2007) A new model of cystic fibrosis pathology: lack of transport of glutathione and its thiocyanate conjugates. Med Hypothes 68:101–112CrossRefGoogle Scholar
  35. Choudhuri S, McKim JM, Klaassen CD (1992) Role of hepatic lysosomes in the degradation of metallothionein. Toxicol Appl Pharmacol 115:64–71PubMedCrossRefGoogle Scholar
  36. Christensen EI, Verroust PJ, Nielsen R (2009) Receptor-mediated endocytosis in renal proximal tubule. Pflugers Arch Eur J Physiol 458:1039–1048CrossRefGoogle Scholar
  37. Cole SPC, Deeley RG (2006) Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol Sci 27:438–446PubMedCrossRefGoogle Scholar
  38. D’Amico G, Bazzi C (2003) Pathophysiology of proteinuria. Kidney Int 63:809–825PubMedCrossRefGoogle Scholar
  39. Dalton T, Fu K, Enders GC et al (1996a) Analysis of the effects of overexpression of metallothionein-1 in transgenic mice on the reproductive toxicology of cadmium. Environ Health Perspect 104:68–76PubMedCrossRefGoogle Scholar
  40. Dalton TP, Fu K, Palmiter RD et al (1996b) Transgenic mice that overexpress metallothionein-1 resist dietary zinc deficiency. J Nutr 126:825–833PubMedGoogle Scholar
  41. Dalton TP, Li QW, Bittel D et al (1996c) Oxidative stress activates metal-responsive transcription factor-1 binding activity. Occupancy in vivo of metal response elements in the metallothionein-1 gene promotor. J Biol Chem 271:26233–26241PubMedCrossRefGoogle Scholar
  42. Dalton TP, He L, Wang B et al (2005) Identification of mouse SLC39A8 as a transporter responsible for cadmium-induced toxicity in the testis. Proc Natl Acad Sci USA 102:3401–3406PubMedCrossRefGoogle Scholar
  43. Danielson KG, Ohi S, Huang PC (1982a) Immunochemical detection of metallothionein in specific epithelial cells of rat organs. Proc Natl Acad Sci USA 79:2301–2304PubMedCrossRefGoogle Scholar
  44. Danielson KG, Ohi S, Huang PC (1982b) Immunochemical localization of metallothionein in rat liver and kidney. J Histochem Cytochem 30:1033–1039PubMedGoogle Scholar
  45. Davis SR, Cousins RJ (2000) Metallothionein expression in animals: a physiological perspective on function. J Nutr 130:1085–1088PubMedGoogle Scholar
  46. Day FA, Funk AE, Brady FO (1984) In vivo and ex vivo displacement of zinc from metallothionein by cadmium and by mercury. Chem Biol Interact 50:159–174PubMedCrossRefGoogle Scholar
  47. Devaux S, Maupoil V, Berthelot A (2009) Effects of cadmium on cardiac metallothionein induction and ischemia-reperfusion injury in rats. Can J Physiol Pharmacol 87:617–623PubMedCrossRefGoogle Scholar
  48. Dorian C, Klaassen CD (1995) Protection by zinc-metallothionein (ZnMT) against cadmium-metallothionein-induced nephrotoxicity. Fundam Appl Toxicol 26:99–106PubMedCrossRefGoogle Scholar
  49. Dorian C, Gattone VH II, Klaassen CD (1992) Accumulation and degradation of the protein moiety of cadmium-metallothionein (CdMT) in the mouse kidney. Toxicol Appl Pharmacol 117:242–248PubMedCrossRefGoogle Scholar
  50. Dorian C, Gattone VH II, Klaassen CD (1995) Discrepancy between the nephrotoxic potencies of cadmium-metallothionein and cadmium chloride and the renal concentration of cadmium in the proximal convoluted tubules. Toxicol Appl Pharmacol 130:161–168PubMedCrossRefGoogle Scholar
  51. Dubey RK, Jackson EK (2001) Estrogen-induced cardiorenal protection: potential cellular, biochemical, and molecular mechanisms. Am J Physiol Renal Physiol 280:F365–F388PubMedGoogle Scholar
  52. Dudley RE, Gammal LM, Klaassen CD (1985) Cadmium-induced hepatic and renal injury in chronically exposed rats: likely role of hepatic cadmium-metallothionein in nephrotoxicity. Toxicol Appl Pharmacol 77:414–426PubMedCrossRefGoogle Scholar
  53. Ebadi M, Iversen PL, Hao R et al (1995) Expression and regulation of brain metallothionein. Neurochem Int 27:1–22PubMedCrossRefGoogle Scholar
  54. Edwards JR, Prozialeck WC (2009) Cadmium, diabetes and chronic kidney disease. Toxicol Appl Pharmacol 238:289–293PubMedCrossRefGoogle Scholar
  55. Eisenhans B, Strugala GJ, Schafer SG (1997) Small-intestinal absorption of cadmium and the significance of mucosal metallothionein. Human Exp Toxicol 16:429–434CrossRefGoogle Scholar
  56. Erfurt C, Roussa E, Thevenod F (2003) Apoptosis by Cd2+ or CdMT in proximal tubule cells: different uptake routes and permissive role of endo/lysosomal CdMT uptake. Am J Physiol Cell Physiol 285:C1367–C1376PubMedGoogle Scholar
  57. Feldman SL, Failla ML, Cousins RJ (1978) Degradation of rat liver metallothioneins in vitro. Biochim Biophys Acta 544:638–646PubMedGoogle Scholar
  58. Folch J, Ortega A, Cabre A et al (1998) Urinary levels of metallothioneins and metals in subjects from a semiindustrialized area in Tarragona province of Spain. Biol Trace Elem Res 63:113–121PubMedCrossRefGoogle Scholar
  59. Freisinger E (2008) Plant MTs—long neglected members of the metallothionein superfamily. Dalton Transact 47:6663–6675CrossRefGoogle Scholar
  60. Fujishiro H, Okugaki S, Kubota K et al (2009) The role of ZIP-8 down-regulation in cadmium-resistant metallothionein-null cells. J Appl Toxicol 29:367–373PubMedCrossRefGoogle Scholar
  61. Garrett SH, Sens MA, Todd JH et al (1999) Expression of MT-3 protein in the human kidney. Toxicol Lett 105:207–214PubMedCrossRefGoogle Scholar
  62. Garrett SH, Phillips V, Somji S et al (2002) Transient induction of metallothionein isoform 3 (MT-3), c-fos, c-jun, and c-myc in human proximal tubule cells exposed to cadmium. Toxicol Lett 126:69–80PubMedCrossRefGoogle Scholar
  63. Ghio AJ, Piantadosi CA, Wang XC et al (2005) Divalent metal transporter-1 decreases metal-related injury in the lung. Am J Physiol Lung Cell Mol Physiol 289:L460–L467PubMedCrossRefGoogle Scholar
  64. Goering PL, Klaasen CD (1984a) Resistance to cadmium-induced hepatotoxicity in immature rats. Toxicol Appl Pharmacol 74:321–329PubMedCrossRefGoogle Scholar
  65. Goering PL, Klaassen CD (1984b) Tolerance to cadmium-induced toxicity depends on presynthesized metallothionein in liver. J Toxicol Environ Health 14:803–812PubMedCrossRefGoogle Scholar
  66. Goering PL, Klaassen CD (1984c) Zinc-induced tolerance to cadmium hepatotoxicity. Toxicol Appl Pharmacol 74:299–307PubMedCrossRefGoogle Scholar
  67. Gunes C, Heuchel R, Georgiev O et al (1998) Embryonic lethality and liver degeneration in mice lacking the metal-responsive transcriptional activator MTF-1. EMBO J 17:2846–2854PubMedCrossRefGoogle Scholar
  68. Gunshin H, Mackenzie B, Berger UV et al (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488PubMedCrossRefGoogle Scholar
  69. Habeebu SS, Liu J, Liu Y, Klaassen CD (2000a) Metallothionein-null mice are more sensitive than wild-type mice to liver injury induced by repeated exposure to cadmium. Toxicol Sci 55:223–232PubMedCrossRefGoogle Scholar
  70. Habeebu SS, Liu J, Liu YP et al (2000b) Metallothionein-null mice are more susceptible than wild-type mice to chronic CdCl2-induced bone injury. Toxicol Sci 56:211–219PubMedCrossRefGoogle Scholar
  71. Hamer DH (1986) Metallothionein. Ann Rev Biochem 55:913–951PubMedGoogle Scholar
  72. Hao Q, Hong S-H, Maret W (2007) Lipid raft-dependent endocytosis of metallothionein in HepG2 cells. J Cell Physiol 210:428–435PubMedCrossRefGoogle Scholar
  73. Haq F, Mahoney M, Koropatnick J (2003) Signalling events for metallothionein induction. Mutat Res 533:211–226PubMedGoogle Scholar
  74. Hart BA, Voss GW, Willean CL (1989) Pulmonary tolerance to cadmium following cadmium aerosol pretreatment. Toxicol Appl Pharmacol 101:447–460PubMedCrossRefGoogle Scholar
  75. Hart BA, Gong Q, Eneman JD et al (1995) In vivo expression of metallothionein in rat alveolar macrophages and type II epithelial cells following repeated cadmium aerosol exposure. Toxicol Appl Pharmacol 133:82–90PubMedCrossRefGoogle Scholar
  76. Hart BA, Potts RJ, Watkin RD (2001) Cadmium adaptation in the lung–a double-edged sword. Toxicology 160(1–3):65–70PubMedCrossRefGoogle Scholar
  77. Herak-Kramberger CM, Sabolic I (2001) The integrity of renal cortical brush-border and basolateral membrane vesicles is damaged in vitro by nephrotoxic heavy metals. Toxicology 156:139–147PubMedCrossRefGoogle Scholar
  78. Herak-Kramberger CM, Brown D, Sabolic I (1998) Cadmium inhibits vacuolar H+-ATPase and endocytosis in rat kidney cortex. Kidney Int 53:1713–1726PubMedCrossRefGoogle Scholar
  79. Herak-Kramberger CM, Sabolic I, Blanusa M et al (2000) Cadmium inhibits vacuolar H+-ATPase-mediated acidification in the rat epididymis. Biol Reprod 63:599–606PubMedCrossRefGoogle Scholar
  80. Heuchel R, Radtke F, Georgiev O et al (1994) The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. EMBO J 13:2870–2875PubMedGoogle Scholar
  81. Hoey JG, Garrett SH, Sens MA et al (1997) Expression of MT-3 mRNA in human kidney, proximal tubule cell cultures, and renal cell carcinoma. Toxicol Lett 92:149–160PubMedCrossRefGoogle Scholar
  82. Hozumi I, Suzuki JS, Kanazawa H et al (2008) Metallothionein-3 is expressed in the brain and various peripheral organs of the rat. Neurosci Lett 438:54–58PubMedCrossRefGoogle Scholar
  83. Huff J, Lunn RM, Waalkes MP et al (2007) Cadmium-induced cancers in animals and in humans. Int J Occup Environ Health 13:202–212PubMedGoogle Scholar
  84. Hunziker PE, Kaur P, Wan M et al (1995) Primary structures of 7 metallothionenis from rabbit tissue. Biochem J 306:265–270PubMedGoogle Scholar
  85. Hutton M (1983) Sources of cadmium in the environment. Ecotoxicol Environ Safety 7:9–24PubMedCrossRefGoogle Scholar
  86. Iszard MB, Liu J, Liu YP et al (1995) Characterization of metallothionein-I-transgenic mice. Toxicol Appl Pharmacol 133:305–312PubMedCrossRefGoogle Scholar
  87. Itoh S, Kim HW, Nakagawa O et al (2008) Novel role of antioxidant-1 (Atox1) as a copper-dependent transcription factor involved in cell proliferation. J Biol Chem 283:9157–9167PubMedCrossRefGoogle Scholar
  88. Jacob C, Maret W, Vallee BL (1998) Control of zinc transfer between thionein, metallothionein, and zinc proteins. Proc Natl Acad Sci USA 95:3489–3494PubMedCrossRefGoogle Scholar
  89. Jacquilett G, Barbier O, Cougnon M et al (2006) Zinc protects renal function during cadmium intoxication in the rat. Am J Physiol Renal Physiol 290:F127–F137CrossRefGoogle Scholar
  90. Järup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208PubMedCrossRefGoogle Scholar
  91. Järup L, Berglund M, Elinder CG et al (1998) Health effects of cadmium exposure—a review of the literature and a risk estimate. Scand J Work Environ Health 24(Suppl. 1):1–52PubMedGoogle Scholar
  92. Jeong SH, Habeebu SSM, Klaassen CD (2000) Cadmium decreases gap junctional intercellular communications in mouse liver. Toxicol Sci 57:156–166PubMedCrossRefGoogle Scholar
  93. Jiang LJ, Maret W, Vallee BL (1998a) The ATP-metallothionein complex. Proc Natl Acad Sci USA 95:9146–9149PubMedCrossRefGoogle Scholar
  94. Jiang LJ, Maret W, Vallee BL (1998b) The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase. Proc Natl Acad Sci USA 95:3483–3488PubMedCrossRefGoogle Scholar
  95. Jin T, Nordberg GF, Nordberg M (1987) Resistance to acute nephrotoxicity induced by cadmium-metallothionein dependence on pretreatment with cadmium chloride. Pharmacol Toxicol 61:89–93PubMedCrossRefGoogle Scholar
  96. Jin TY, Nordberg G, Sehlin J, Vesterberg O (1996) Protection against cadmium-metallothionein nephrotoxicity in streptozotocin-induced diabetic rats—role of increased metallo-thionein synthesis induced by streptozotocin. Toxicology 106:55–63PubMedCrossRefGoogle Scholar
  97. Johnson MD, Kenney N, Stoica A et al (2003) Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nature Med 9:1081–1084PubMedCrossRefGoogle Scholar
  98. Joseph P (2009) Mechanisms of cadmium carcinogenesis. Toxicol Appl Pharmacol 238:272–279PubMedCrossRefGoogle Scholar
  99. Kägi JHR, Vallee BL (1960) Metallothionein: a cadmium- and zinc-containing protein from equine renal cortex. J Biol Chem 235:3460–3465PubMedGoogle Scholar
  100. Kang YJ (2006) Metallothionein redox cycle. Exp Biol Med 231:1459–1467Google Scholar
  101. Kang YJ, Li GQ, Saari JT (1999) Metallothionein inhibits ischemia-reperfusion injury in mouse heart. Am J Physiol Heart Circ Physiol 45:H993–H997Google Scholar
  102. Kazantzis G (2004) Cadmium, osteoporosis and calcium metabolism. Biometals 17:493–498PubMedCrossRefGoogle Scholar
  103. Kenaga C, Cherian MG, Cox C et al (1996) Metallothionein induction and pulmonary responses to inhaled cadmium chloride in rats and mice. Fundam Appl Toxicol 30:204–212PubMedCrossRefGoogle Scholar
  104. Kershaw WC, Klaassen (1992) Degradation and metal composition of hepatic isometallothioneins in rats. Toxicol Appl Pharmacol 112:24–31PubMedCrossRefGoogle Scholar
  105. Khan I, Ahmad S, Thomas N (1998) Differential translation of the alpha-1 isoforms of L-type calcium channel in rat brain and other tissues. Biochem Molec Biol Int 45:895–904PubMedGoogle Scholar
  106. Kher A, Meldrum KK, Wang MJ et al (2005) Cellular and molecular mechanisms of sex differences in renal ischemia-reperfusion injury. Cardiovasc Res 67:594–603PubMedCrossRefGoogle Scholar
  107. Kim D, Garrett SH, Sens MA et al (2002) Metallothionein isoform 3 and proximal tubule vectorial active transport. Kidney Int 61:464–472PubMedCrossRefGoogle Scholar
  108. Kimura T, Itoh N, Min KS et al (1998) Tissue accumulation of cadmium following oral administration to metallothionein-null mice. Toxicol Lett 99:85–90PubMedCrossRefGoogle Scholar
  109. Klaassen CD, Lehman-McKeeman LD (1989) Regulation of the isoforms of metallothionein. Biol Trace Elem Res 21:119–129PubMedCrossRefGoogle Scholar
  110. Klaassen CD, Liu J (1997) Role of metallothionein in cadmium-induced hepatotoxicity and nephrotoxicity. Drug Metab Rev 29:79–102PubMedCrossRefGoogle Scholar
  111. Klaassen CD, Choudhuri S, McKim JM Jr et al (1994) In vitro and in vivo studies on degradation of metallothionein. Environ Health Perspect 102(Suppl 3):141–146PubMedCrossRefGoogle Scholar
  112. Klaassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267–294PubMedCrossRefGoogle Scholar
  113. Klaassen CD, Liu J, Diwan BA (2009) Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 238:215–220PubMedCrossRefGoogle Scholar
  114. Klassen RB, Crenshaw K, Kozyraki R et al (2004) Megalin mediates renal uptake of heavy metal metallothionein complexes. Am J Physiol Renal Physiol 287:F393–F403PubMedCrossRefGoogle Scholar
  115. Knepper MA, Pisitkun T (2007) Exosomes in urine: who would have thought.? Kidney Int 72:1043–1045PubMedCrossRefGoogle Scholar
  116. Koh AS, Simmons-Willis TA, Pritchard JB et al (2002) Identification of a mechanism by which the methylmercury antidotes N-acetylcysteine and dimercaptopropanesulfonate enhance urinary metal excretion: Transport by the renal organic anion transporter-1. Mol Pharmacol 62:921–926PubMedCrossRefGoogle Scholar
  117. Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol Cell Physiol 275:C1–C24Google Scholar
  118. Kuester RK, Waalkes MP, Goering PL et al (2002) Differential hepatotoxicity induced by cadmium in Fischer 344 and Sprague-Dawley rats. Toxicol Sci 65:151–159PubMedCrossRefGoogle Scholar
  119. LaRochelle O, Gagne V, Charron J et al (2001) Phosphorylation is involved in the activation of metal-regulatory transcription factor 1 in response to metal ions. J Biol Chem 276:41879–41888PubMedCrossRefGoogle Scholar
  120. Lash LH, Pull DA, Xu F et al (2007) Role of rat organic anion transporter 3 (Oat3) in the renal basolateral transport of glutathione. Chem Biol Interact 170:124–134PubMedCrossRefGoogle Scholar
  121. Laskey `, Rehnberg GL, Laws SC et al (1984) Reproductive effects of low acute doses of cadmium chloride in adult male rats. Toxicol Appl Pharmacol 73:250–255PubMedCrossRefGoogle Scholar
  122. Lee WK, Bork U, Gholamrezaei F, Thevenod F (2005) Cd2+-induced cytochrome c release in apoptotic proximal tubule cells: role of mitochondrial permeability transition pore and Ca2+ uniporter. Am J Physiol Renal Physiol 288:F27–F39PubMedCrossRefGoogle Scholar
  123. Lehman LD, Klaassen CD (1986) Dosage-dependent disposition of cadmium administered orally to rats. Toxicol Appl Pharmacol 84:159–167PubMedCrossRefGoogle Scholar
  124. Levadoux M, Mahon C, Beattie JH et al (1999) Nuclear import of metallothionein requires its mRNA to be associated with the perinuclear cytoskeleton. J Biol Chem 274:34961–34966PubMedCrossRefGoogle Scholar
  125. Liu J, Klaassen CD (1996) Absorption and distribution of cadmium in metallothionein-I transgenic mice. Fund Appl Toxicol 29:294–300CrossRefGoogle Scholar
  126. Liu J, Liu Y, Klaassen CD (1994) Nephrotoxicity of CdCl2 and Cd-metallothionein in cultured rat kidney proximal tubules and LLC-PK1 cells. Toxicol Appl Pharmacol 128:264–270PubMedCrossRefGoogle Scholar
  127. Liu YP, Liu J, Iszard MB et al (1995) Transgenic mice that overexpress metallothionein-1 are protected from cadmium lethality and hepatotoxicity. Toxicol Appl Pharmacol 135:222–228PubMedCrossRefGoogle Scholar
  128. Liu J, Liu Y, Michalska AE et al (1996a) Distribution and retention of cadmium in metallothionein I and II null mice. Toxicol Appl Pharmacol 136:260–268PubMedCrossRefGoogle Scholar
  129. Liu Y, Liu J, Palmiter R et al (1996b) Metallothionein-I-transgenic mice are not protected from acute cadmium-metallothionein-induced nephrotoxicity. Toxicol Appl Pharmacol 137:307–315PubMedCrossRefGoogle Scholar
  130. Liu J, Liu Y, Habeebu SS et al (1998) Susceptibility of MT-null mice to chronic CdCl2-induced nephrotoxicity indicates that renal injury is not mediated by the CdMT complex. Toxicol Sci 46:197–203PubMedGoogle Scholar
  131. Liu J, Liu YP, Habeebu SS et al (1999a) Metallothionein-null mice are highly susceptible to the hematotoxic and immunotoxic effects of chronic CdCl2 exposure. Toxicol Appl Pharmacol 159:98–108PubMedCrossRefGoogle Scholar
  132. Liu YP, Liu J, Habeebu SM et al (1999b) Metallothionein protects against the nephrotoxicity produced by chronic CdMT exposure. Toxicol Sci 50:221–227PubMedCrossRefGoogle Scholar
  133. Liu J, Corton C, Dix DJ et al (2001a) Genetic background but not metallothionein phenotype dictates sensitivity to cadmium-induced testicular injury in mice. Toxicol Appl Pharmacol 176:1–9PubMedCrossRefGoogle Scholar
  134. Liu YP, Liu J, Klaassen CD (2001b) Metallothionein-null and wild-type mice show similar cadmium absorption and tissue distribution following oral cadmium administration. Toxicol Appl Pharmacol 175:253–259PubMedCrossRefGoogle Scholar
  135. Liu J, Cheng ML, Yang Q et al (2007) Blood metallothionein transcript as a biomarker for metal sensitivity: low blood metallothionein transcripts in arsenicosis patients from Guizhou, China. Environ Health Perspect 115:1101–1106PubMedCrossRefGoogle Scholar
  136. Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenicity. Toxicol Appl Pharmacol 238:209–214PubMedCrossRefGoogle Scholar
  137. Lu H, Jin TY, Nordberg G et al (2005) Metallothionein gene expression in peripheral lymphocytes and renal dysfunction in a population environmentally exposed to cadmium. Toxicol Appl Pharmacol 206:150–156PubMedCrossRefGoogle Scholar
  138. Lynes MA, Zaffuto K, Unfricht DW et al (2006) The physiological roles of extracellular metallothionein. Exp Biol Med 231:1548–1554Google Scholar
  139. Maret W (2003) Cellular zinc and redox states converge in the metallothionein/thionein pair. J Nutr 133:1460S–1462SPubMedGoogle Scholar
  140. Marshansky V, Bourgoin S, Londono I et al (1997) Receptor-mediated endocytosis in kidney proximal tubules: recent advances and hypothesis. Electrophoresis 18:2661–2676PubMedCrossRefGoogle Scholar
  141. Massany P, Lukac N, Uhrin V et al (2007) Female reproductive toxicology of cadmium. Acta Biol Hungar 58:287–299CrossRefGoogle Scholar
  142. Masters BA, Kelly E, Quaife CJ et al (1994) Targeted disruption of metallothionein I and II genes increase sensitivity to cadmium. Proc Natl Acad Sci USA 91:584–588PubMedCrossRefGoogle Scholar
  143. McKenna IM, Bare RM, Waalkes MP (1996) Metallothionein gene expression in testicular interstitial cells and liver of rats treated with cadmium. Toxicology 107:121–130PubMedCrossRefGoogle Scholar
  144. McKenna IM, Gordon T, Chen LC et al (1998) Expression of metallothionein protein in the lungs of Wistar rats and C57 and DBA mice exposed to cadmium oxide fumes. Toxicol Appl Pharmacol 153:169–178PubMedCrossRefGoogle Scholar
  145. McKim JM Jr, Choudhuri S, Klaassen CD (1992) In vitro degradation of apo-, zinc-, and cadmium-metallothionein by cathepsin B, C, and D. Toxicol Appl Pharmacol 116:117–124PubMedCrossRefGoogle Scholar
  146. Mendez-Armenta M, Rios C (2007) Cadmium neurotoxicity. Environ Toxicol Pharmacol 23:350–358CrossRefGoogle Scholar
  147. Mesna OJ, Wilhelmsen TW, Andersen RA (2000) Correlations between cadmium treatment, oxygen uptake and metallothionein response in liver and kidney from two mice strains. Comp Biochem Physiol B 125:21–27PubMedCrossRefGoogle Scholar
  148. Mididoddi S, McGuirt JP, Sens MA et al (1996) Isoform-specific expression of metallothionein mRNA in the developing and adult human kidney. Toxicol Lett 85:17–27PubMedCrossRefGoogle Scholar
  149. Miles AT, Hawksworth GM, Beattie JH et al (2000) Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Crit Rev Biochem Mol Biol 35:35–70PubMedCrossRefGoogle Scholar
  150. Milnerwicz H, Jablonowska M, Bizon A (2009) Change of zinc, copper, and metallothionein concentrations and the copper-zinc superoxide dismutase activity in patients with pancreatitis. Pancreas 38:681–688CrossRefGoogle Scholar
  151. Min KS, Hatta A, Onosaka S et al (1987) Protective role of renal metallothionein against Cd nephrotoxicity in rats. Toxicol Appl Pharmacol 88:294–301PubMedCrossRefGoogle Scholar
  152. Misra RR, Crance KA, Bare RM et al (1997) Lack of correlation between the inducibility of metallothionein mRNA and metallothionein protein in cadmium-exposed rodents. Toxicology 117:99–109PubMedCrossRefGoogle Scholar
  153. Moffatt P, Denizeau F (1997) Metallothionein in physiological and pathophysiological processes. Drug Metab Rev 29:261–307PubMedCrossRefGoogle Scholar
  154. Moffatt P, Seguin C (1998) Expression of the gene encoding metallothionein-3 in organs of the reproductive system. DNA Cell Biol 17:501–510PubMedCrossRefGoogle Scholar
  155. Moltedo O, Verde C, Capasso A et al (2000) Zinc transport and metallothionein secretion in the intestinal human cell line Caco-2. J Biol Chem 275:31819–31825PubMedCrossRefGoogle Scholar
  156. Nagano T, Itoh N, Ebisutani C et al (2000) The transport mechanism of metallothionein is different from that of classical NLS-bearing protein. J Cell Physiol 185:440–446PubMedCrossRefGoogle Scholar
  157. Nickel W (2003) The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur J Biochem 270:2109–2119PubMedCrossRefGoogle Scholar
  158. Nielson KB, Atkin CL, Winge DR (1985) Distinct metal-binding configurations in metallothionein. J Biol Chem 260:5342–5350PubMedGoogle Scholar
  159. Nishimura H, Nishimura N, Tohyama C (1989a) Immunohistochemical localization of metallothionein in developing rat tissues. J Histochem Cytochem 37:715–722PubMedGoogle Scholar
  160. Nishimura N, Nishimura H, Tohyama C (1989b) Localization of metallothionein in female reproductive organs of rat and Guinea pig. J Histochem Cytochem 37:1601–1607PubMedGoogle Scholar
  161. Nomiyama K (1980) Recent progress and perspectives in cadmium health effects studies. Sci Total Environ 14:199–232PubMedCrossRefGoogle Scholar
  162. Nomiyama K, Nomiyama H, Kameda N (1998) Plasma cadmium-metallothionein, a biological exposure for cadmium-induced renal dysfunction, based on the mechanism of its action. Toxicology 129:157–168PubMedCrossRefGoogle Scholar
  163. Nordberg GF (1975) Effects of long-term cadmium exposure on the seminal vesicles of mice. J Reprod Fert 45:165–167CrossRefGoogle Scholar
  164. Nordberg M (1998) Metallothionenis: historical review and state of knowledge. Talanta 46:243–254PubMedCrossRefGoogle Scholar
  165. Nordberg GF (2009) Historical perspectives on cadmium toxicology. Toxicol Appl Pharmacol 238:192–200PubMedCrossRefGoogle Scholar
  166. Nordberg M, Nordberg GF (2000) Toxicological aspects of metallothionein. Cell Mol Biol 46:451–463PubMedGoogle Scholar
  167. Nordberg M, Nordberg GF (2009) Metallothioneins: historical development and overview. Met Ions Life Sci 5:1–29CrossRefGoogle Scholar
  168. Nordberg GF, Garvey JS, Chang CC (1982) Metallothionein in plasma and urine of cadmium workers. Environ Res 28:179–182PubMedCrossRefGoogle Scholar
  169. Oda N, Sogawa CA, Sogawa N et al (2001) Metallothionein expression and localization in rat bone tissue after cadmium injection. Toxicol Lett 123:143–150PubMedCrossRefGoogle Scholar
  170. Ogra Y, Suzuki KT (2000) Nuclear trafficking of metallothionein. Possible mechanisms and current knowledge. Cell Mol Biol 46:357–365PubMedGoogle Scholar
  171. Oh SH, Deagen JT, Whanger PD et al (1978) Biological function of metallothionein. V. Its induction in rats by various stresses. Am J Physiol 234:E282–E285PubMedGoogle Scholar
  172. Okamoto T, Jeong SY, Takahashi Y et al (2001) Expression of the alpha 1D subunit of the L-type voltage gated calcium channel in human liver. Int J Mol Med 8:413–416PubMedGoogle Scholar
  173. Olsson IM, Bensryd I, Lundh T et al (2002) Cadmium in blood and urine—impact of sex, age, dietary intake, iron status, and former smoking—association of renal effects. Environ Health Perspect 110:1185–1190PubMedCrossRefGoogle Scholar
  174. Omarova A, Phillips CJC (2007) A meta-analysis of literature data relating to the relationship between cadmium intake and toxicity indicators in humans. Environ Res 103:432–440PubMedCrossRefGoogle Scholar
  175. Onosaka S, Cherian MG (1981) Induced synthesis of metallothionein in various tissues of rats in response to metals. I. Repeated cadmium injection. Toxicology 22:91–101PubMedCrossRefGoogle Scholar
  176. Onosaka S, Min KS, Fujita Y et al (1988) High concentration of pancreatic metallothionein in normal mice. Toxicology 50:27–35PubMedCrossRefGoogle Scholar
  177. Padanilam BJ (2003) Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis. Am J Physiol Renal Physiol 284:F608–F627PubMedGoogle Scholar
  178. Palmiter RD (1987) Molecular biology of metallothionein gene expression. Exp Suppl 52:63–80Google Scholar
  179. Palmiter RD (1994) Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor, MTF-1. Proc Natl Acad Sci USA 91:1219–1223PubMedCrossRefGoogle Scholar
  180. Palmiter RD (1998) The elusive function of metallothioneins. Proc Natl Acad Sci USA 95:8428–8430PubMedCrossRefGoogle Scholar
  181. Palmiter RD, Findley SD, Whitmore TE et al (1992) MT-III, a brain-specific member of the metallothionein gene family. Proc Natl Acad Sci USA 89:6333–6337PubMedCrossRefGoogle Scholar
  182. Palumaa P, Eriste E, Njunkova O et al (2002) Brain-specific metallothionein-3 has higher metal-binding capacity than ubiquitous metallothioneins and binds metals noncooperatively. Biochemistry 41:6158–6163PubMedCrossRefGoogle Scholar
  183. Palumaa P, Eriste E, Kruusel K et al (2003) Metal binding to brain-specific metallothionein-3 studied by electrospray ionization mass spectrometry. Cell Mol Biol 49:763–768PubMedGoogle Scholar
  184. Pattanaik A, Shaw CF III, Petering DH et al (1994) Basal metallothionein in tumors: widespread presence of apoprotein. J Inorg Biochem 54:91–105PubMedCrossRefGoogle Scholar
  185. Perkins DJ (1961) Studies on the interaction of zinc, cadmium and mercury ions with native and chemically modified human serum albumin. Biochem J 80:668–672PubMedGoogle Scholar
  186. Petering DH, Zhu J, Krezoski S et al (2006) Apo-metallothionein emerging as a major player in the cellular activities of metallothionein. Exp Biol Med 231:1528–1534Google Scholar
  187. Petering DH, Krezoski S, Tabatabai NM (2009) Metallothionein toxicology: metal ion trafficking and cellular protection. Met Ions Life Sci 5:353–397CrossRefGoogle Scholar
  188. Pham TND, Segui JA, Fortin C et al (2004) Cadmium uptake in rat hepatocytes in relation to speciation and to complexation with metallothionein and albumin. J Cell Physiol 201:320–330PubMedCrossRefGoogle Scholar
  189. Powel SR (2000) The antioxidant properties of zinc. J Nutr 130:1447S–1454SGoogle Scholar
  190. Prozialeck WC (2000) Evidence that E-cadherin may be a target for cadmium toxicity in epithelial cells. Toxicol Appl Pharmacol 164:231–249PubMedCrossRefGoogle Scholar
  191. Prozialeck WC, Wellington DR, Lamar PC (1993) Comparison of the cytotoxic effects of cadmium chloride and cadmium-metallothionein in LLC-PK1 cells. Life Sci 53:PL337–PL342PubMedCrossRefGoogle Scholar
  192. Prozialeck WC, Lamar PC, Lynch SA (2003) Cadmium alters the localization of N-cadherin, E-cadherin, and beta-catenin in the proximal tubule epithelium. Toxicol Appl Pharmacol 189:180–195PubMedCrossRefGoogle Scholar
  193. Qu W, Fuquay R, Sakurai T et al (2006) Acquisition of apoptotic resistance in cadmium-induced malignant transformation: specific perturbation of JNK signal transduction pathway and associated metallothionein overexpression. Mol Carcinog 45:561–571PubMedCrossRefGoogle Scholar
  194. Quaife CJ, Findley SD, Erickson JC et al (1994) Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry 33:7250–7259PubMedCrossRefGoogle Scholar
  195. Rahman MT, Vandingenen A, DeLey M (2000) Metallothionein biosynthesis in human RBC precursors. Cell Physiol Biochem 10:237–242PubMedCrossRefGoogle Scholar
  196. Rana SVS (2008) Metals and apoptosis: recent developments. J Trace Elem Med Biol 22:262–284PubMedCrossRefGoogle Scholar
  197. Regnier A, Dannhoffer L, Blouquit-Laye S et al (2008) Expression of cystic fibrosis transmembrane conductance regulator in the human distal lung. Human Pathol 39:368–376CrossRefGoogle Scholar
  198. Ren XY, Zhou Y, Zhang HP et al (2003a) Metallothionein gene expression under different time in testicular Sertoli and spermatogenic cells of rats treated with cadmium. Reprod Toxicol 17:219–227PubMedCrossRefGoogle Scholar
  199. Ren XY, Zhou Y, Zhang JP et al (2003b) Expression of metallothionein gene at different time in testicular intersticial cells and liver of rats treated with cadmium. World J Gastroenterol 9:1554–1558PubMedGoogle Scholar
  200. Roels H, Lauwerys R, Buchet JP et al (1983) Significance of urinary metallothionein in workers exposed to cadmium. Int Arch Occup Environ Health 52:159–166PubMedCrossRefGoogle Scholar
  201. Romero-Isart N, Vašak M (2002) Advances in the structure and chemistry of metallothioneins. J Inorg Biochem 88:388–396PubMedCrossRefGoogle Scholar
  202. Sabolic I (2006) Common mechanisms in nephropathy induced by toxic metals. Nephron Physiol 104:107–114CrossRefGoogle Scholar
  203. Sabolic I, Herak-Kramberger CM, Brown D (2001) Subchronic cadmium treatment affects the abundance and arrangement of cytoskeletal proteins in rat renal proximal tubule cells. Toxicology 165:205–216PubMedCrossRefGoogle Scholar
  204. Sabolic I, Ljubojevic M, Herak-Kramberger CM et al (2002) Cd-MT causes endocytosis of brush-border transporters in rat renal proximal tubules. Am J Physiol Renal Physiol 283:F1389–F1402PubMedGoogle Scholar
  205. Sabolic I, Herak-Kramberger CM, Antolovic R et al (2006) Loss of basolateral invaginations in proximal tubules of cadmium-intoxicated rats is independent of microtubules and clathrin. Toxicology 218:149–163PubMedCrossRefGoogle Scholar
  206. Sagiura T, Nakamura H (1994) Metallothionein in platelets. Int Arch Allerg Immunol 103:341–348CrossRefGoogle Scholar
  207. Samson SLA, Gedamu L (1998) Molecular analyses of metallothionein gene regulation. Prog Nucleic Acid Res Mol Biol 59:257–288PubMedCrossRefGoogle Scholar
  208. Shaikh ZA, Hirayama K (1979) Metallothionein in the extracellular fluids as an index of cadmium toxicity. Environ Health Perspect 28:267–271PubMedCrossRefGoogle Scholar
  209. Shaikh ZA, Jordan SA, Tewari PC (1993) Cadmium disposition and metallothionein induction in mice—strain-dependent, sex-dependent, age-dependent and dose-dependent differences. Toxicology 80:51–70PubMedCrossRefGoogle Scholar
  210. Shaikh ZA, Vu TT, Zaman K (1999) Oxidative stress as a mechanism of chronic cadmium-induced hepatotoxicity and renal toxicity and protection by antioxidants. Toxicol Appl Pharmacol 154:256–263PubMedCrossRefGoogle Scholar
  211. Shimada A, Yanagida M, Umemura T (1997) An immunohistochemical study on the tissue-specific localization of metallothionein in dogs. J Comp Pathol 116:1–11PubMedCrossRefGoogle Scholar
  212. Shiraishi N, Hochadel JF, Coogan TP et al (1995) Sensitivity to cadmium-induced genotoxicity in rat testicular cells is associated with minimal expression of the metallothionein gene. Toxicol Appl Pharmacol 130:229–236PubMedCrossRefGoogle Scholar
  213. Simons TJB (1991) Intracellular free zinc and zinc buffering in human red blood cells. J Membr Biol 123:63–71PubMedCrossRefGoogle Scholar
  214. Siu ER, Mruk DD, Porto CS et al (2009) Cadmium-induced testicular injury. Toxicol Appl Pharmacol 238:240–249PubMedCrossRefGoogle Scholar
  215. Smirnova IV, Bittel DC, Ravindra R et al (2000) Zinc and cadmium can promote rapid nuclear translocation of metal response element-binding transcription factor-1. J Biol Chem 275:9377–9384PubMedCrossRefGoogle Scholar
  216. Smith CP, Thevenod F (2009) Iron transport and the kidney. Biochim Biophys Acta 1790:724–730PubMedGoogle Scholar
  217. Solaiman D, Jonah MM, Miyazaki W et al (2001) Increased metallothionein in mouse liver, kidneys, and duodenum during lactation. Toxicol Sci 60:184–192PubMedCrossRefGoogle Scholar
  218. Somji S, Garrett SH, Sens MA et al (2004) Expression of metallothionein isoform 3 (MT-3) determines the choice between apoptotic or necrotic cell death in Cd2+-exposed human proximal tubule cells. Toxicol Sci 80:358–366PubMedCrossRefGoogle Scholar
  219. Somji S, Zhou XD, Garrett SH et al (2006) Urothelial cells malignantly transformed by exposure to cadmium (Cd2+) and arsenite (As3+) have increased resistance to Cd2+ and As3+-induced cell death. Toxicol Sci 94:293–301PubMedCrossRefGoogle Scholar
  220. Souza V, Bucio L, Gutierrez-Ruiz MC (1997) Cadmium uptake by a human hepatic cell line (WRL-68 cells). Toxicology 120:215–220PubMedCrossRefGoogle Scholar
  221. Stillman MJ (1995) Metallothioneins. Coordin Chem Rev 144:461–511CrossRefGoogle Scholar
  222. Sugihira N, Tohyama C, Murakami M et al (1986) Significance of increase in urinary metallothionein of rats repeatedly exposed to cadmium. Toxicology 41:1–9PubMedCrossRefGoogle Scholar
  223. Suhy DA, Simon KD, Linzer DIH et al (1999) Metallothionein is part of a zinc-scavenging mechanism for cell survival under conditions of extreme zinc deprivation. J Biol Chem 274:9183–9192PubMedCrossRefGoogle Scholar
  224. Susin SA, Zamzami N, Kroemer G (1998) Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta 1366:151–165PubMedCrossRefGoogle Scholar
  225. Szczurek EI, Bjornsson CS, Taylor CG (2001) Dietary zinc deficiency and repletion modulate metallothionein immunolocalization and concentration in small intestine and liver of rats. J Nutr 131:2132–2138PubMedGoogle Scholar
  226. Szczurek EI, Bjornsson CS, Noto AD et al (2009) Renal metallothionein responds rapidly and site specifically to zinc repletion in growing rats. J Trace Elem Med Biol 23:176–182PubMedCrossRefGoogle Scholar
  227. Takahashi Y, Ogra Y, Suzuki KT (2005) Nuclear trafficking of metallothionein requires oxidation of a cytosolic partner. J Cell Physiol 202:563–569PubMedCrossRefGoogle Scholar
  228. Takano H, Inoue K, Yanagisawa R et al (2004) Protective role of metallothionein in acute lung injury induced by bacterial endotoxin. Thorax 59:1057–1072PubMedCrossRefGoogle Scholar
  229. Tang W, Shaikh ZA (2001) Renal cortical mitochondrial dysfunction upon cadmium metallothionein administration to Sprague-Dawley rats. J Toxicol Environ Health A 63:221–235PubMedCrossRefGoogle Scholar
  230. Tapia L, Gonzales-Aguero M, Cisternas MF et al (2004) Metallothionein is crucial for safe intracellular copper storage and cell survival at normal and supra-physiological exposure levels. Biochem J 378:617–624PubMedCrossRefGoogle Scholar
  231. Taylor BA, Heiniger HJ, Meier H (1973) Genetic analysis of resistance to cadmium-induced testicular damage in mice. Proc Soc Exp Biol Med 143:629–633PubMedGoogle Scholar
  232. Theocharis SE, Margeli AP, Koutselinis A (2003) Metallothionein: a multifunctional protein from toxicity to cancer. Int J Biol Markers 18:162–169PubMedGoogle Scholar
  233. Thevenod F (2003) Nephrotoxicity and the proximal tubule. Insights from cadmium. Nephron Physiol 93:87–93CrossRefGoogle Scholar
  234. Thevenod F (2009) Cadmium and signalling cascades: to be or not to be. Toxicol Appl Pharmacol 238:221–239PubMedCrossRefGoogle Scholar
  235. Thevenod F (2010) Catch me if you can! Novel aspects of cadmium transport in mammalian cells. Biometals. doi: 10.1007/s10534-010-9309-1 Google Scholar
  236. Thijssen S, Maringwa J, Faes C et al (2007) Chronic exposure of mice to environmentally relevant, low doses of cadmium leads to early renal damage, not predicted by blood or urine cadmium levels. Toxicology 229:145–156PubMedCrossRefGoogle Scholar
  237. Tohyama C, Shaikh ZA (1981) Metallothionein in plasma and urine of cadmium-exposed rats determined by a single-antibody radioimmunoassay. Fundam Appl Toxicol 1:1–7PubMedGoogle Scholar
  238. Tohyama C, Shaikh ZA, Ellis KJ et al (1981a) Metallothionein excretion in urine upon cadmium exposure: its relationship with liver and kidney cadmium. Toxicology 22:181–191PubMedCrossRefGoogle Scholar
  239. Tohyama C, Shaikh ZA, Nogawa K et al (1981b) Elevated urinary excretion of metallothionein due to environmental cadmium exposure. Toxicology 20:289–297PubMedCrossRefGoogle Scholar
  240. Tohyama C, Nishimura H, Nishimura N (1988) Immunohistochemical localization of metallothionein in the liver and kidney of cadmium- or zinc-treated rats. Acta Histochem Cytochem 21:91–102Google Scholar
  241. Torky ARW, Stehfest E, Viehweger K et al (2005) Immuno-histochemical detection of MRPs in human lung cells in culture. Toxicology 207:437–450PubMedCrossRefGoogle Scholar
  242. Trayhurn P, Duncan JS, Wood AM et al (2000) Metallothionein expression and secretion in white adipose tissue. Am J Physiol Regul Integr Comp Physiol 279:R2329–R2335PubMedGoogle Scholar
  243. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344PubMedCrossRefGoogle Scholar
  244. Vahter M, Akesson A, Liden C et al (2007) Gender differences in the disposition and toxicity of metals. Environ Res 104:85–95PubMedCrossRefGoogle Scholar
  245. Vallee BL, Ulmer DD (1972) Biochemical effects of mercury, cadmium, and lead. Ann Rev Biochem 41:91–128PubMedCrossRefGoogle Scholar
  246. Vašak M, Hasler DW (2000) Metallothioneins: new functional and structural insights. Curr Opin Chem Biol 4:177–183PubMedCrossRefGoogle Scholar
  247. Vasconcetos MH, Tam SC, Hesketh JE et al (2002) Metal- and tissue-dependent relationship between metallothionein mRNA and protein. Toxicol Appl Pharmacol 182:91–97CrossRefGoogle Scholar
  248. Verroust PJ, Kozyraki R (2001) The roles of cubilin and megalin, two multiligand receptors, in proximal tubule function: possible implication in the progression of renal disease. Curr Opin Nephrol Hypertens 10:33–38PubMedCrossRefGoogle Scholar
  249. Waalkes MP (2000) Cadmium carcinogenesis in review. J Inorg Biochem 79:241–244PubMedCrossRefGoogle Scholar
  250. Waalkes MP, Klaassen CD (1985) Concentration of metallothionein in major organs of rats after administration of various metals. Fundam Appl Toxicol 5:473–477PubMedCrossRefGoogle Scholar
  251. Waalkes MP, Harvey MJ, Klaassen CD (1984) Relative in vitro affinity of hepatic metallothionein for metals. Toxicol Lett 20:33–39PubMedCrossRefGoogle Scholar
  252. Waisberg M, Joseph P, Hale B et al (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117PubMedCrossRefGoogle Scholar
  253. Wang Y, Fang J, Leonard SS et al (2004a) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med 36:1434–1443PubMedCrossRefGoogle Scholar
  254. Wang Y, Wimmer U, Lichtlen P et al (2004b) Metal-responsive transcription factor-1 (MTF-1) is essential for embryonic liver development and heavy metal detoxification in the adult liver. FASEB J 18:1071–1079PubMedCrossRefGoogle Scholar
  255. Watkins SR, Hodge RM, Cowman DC et al (1977) Cadmium-binding serum proteins. Biochim Biophys Res Commun 74:1408–1410CrossRefGoogle Scholar
  256. Webb M (1986) Role of metallothionein in cadmium metabolism. In: Foulkes EC (ed) Handbook of experimental pharmacology, vol 80. Springer, Berlin, pp 281–337Google Scholar
  257. Wesselkamper SC, McDowel SA, Medvedovic M et al (2006) The role of metallothionein in the pathogenesis of acute lung injury. Am J Resp Cell Mol Biol 34:73–82CrossRefGoogle Scholar
  258. Wilhelmsen TW, Olsvik PA, Hansen BH et al (2002) Evidence for oligomerization of metallothioneins in their functional state. J Chromatogr A 979:249–254PubMedCrossRefGoogle Scholar
  259. Wimmer U, Wang Y, Georgiev O et al (2005) Two major branches of anti-cadmium defense in the mouse: MTF-1/metallothioneins and glutathione. Nucl Acid Res 33:5715–5727CrossRefGoogle Scholar
  260. Winge DR, Miklossy KA (1982) Domain nature of metallothionein. J Biol Chem 257:3471–3476PubMedGoogle Scholar
  261. Wlostowski T (1993) Involvement of metallothionein and copper in cell proliferation. Biometals 6:71–76PubMedCrossRefGoogle Scholar
  262. Wolff NA, Abouhamed M, Verroust FJ et al (2006) Megalin-dependent internalization of cadmium-metallothionein and cytotoxicity in cultured renal proximal tubule cells. J Pharmacol Exp Ther 318:782–791PubMedCrossRefGoogle Scholar
  263. Wolff NA, Lee W-K, Abouhamed M et al (2008) Role of ARF6 in internalization of metal-binding proteins, metallothionein and transferrin, and cadmium-metallothionein toxicity in kidney proximal tubule cells. Toxicol Appl Pharmacol 230:78–85PubMedCrossRefGoogle Scholar
  264. Xie HQ, Kang YJ (2009) Role of cooper in angiogenesis and its medicinal implications. Curr Med Chem 16:1304–1314PubMedCrossRefGoogle Scholar
  265. Yamano T, Shimizu M, Noda T (1998) Comparative effects of repeated administration of cadmium on kidney, spleen, thymus, and bone marrow in 2-, 4-, and 8-month-old male Wistar rats. Toxicol Sci 46:393–402PubMedCrossRefGoogle Scholar
  266. Yang Y, Maret W, Vallee BL (2001) Differential fluorescence labeling of cysteinyl clusters uncovers high tissue levels of thionein. Proc Natl Acad Sci USA 98:5556–5559PubMedCrossRefGoogle Scholar
  267. Ye B, Maret W, Vallee BL (2001) Zinc metallothionein imported into liver mitochondria modulates respiration. Proc Natl Acad Sci USA 98:2317–2322PubMedCrossRefGoogle Scholar
  268. Yiin SJ, Chern CL, Sheu JY et al (1999) Cadmium-induced renal lipid peroxidation in rats and protection by selenium. J Toxicol Environ Health A 57:403–413PubMedCrossRefGoogle Scholar
  269. Yoshida M, Ohta H, Yamauchi Y et al (1998) Age-dependent changes in metallothionein levels in liver and kidney of the Japanese. Biol Trace Elem Res 63:167–175PubMedCrossRefGoogle Scholar
  270. Zalups RK, Ahmad S (2003) Molecular handling of cadmium in transporting epithelia. Toxicol Appl Pharmacol 186:163–188PubMedCrossRefGoogle Scholar
  271. Zangger K, Oz G, Armitage IM (2000) Re-evaluation of the binding of ATP to metallothionein. J Biol Chem 275:7534–7538PubMedCrossRefGoogle Scholar
  272. Zangger K, Shen G, Oz G, Otvos JD, Armitage IM (2001) Oxidative dimerization in metallothionein is a result of intermolecular disulphide bonds between cysteines in the alpha-domain. Biochem J 359:353–360PubMedCrossRefGoogle Scholar
  273. Zhang B, Georgiev O, Hagmann M et al (2003) Activity of metal-responsive transcription factor 1 by toxic heavy metals and H2O2 in vitro is modulated by metallothionein. Mol Cell Biol 23:8471–8485PubMedCrossRefGoogle Scholar
  274. Zheng H, Berman NEJ, Klaassen CD (1995) Chemical modulation of metallothinein I and III mRNA in mouse brain. Neurochem Int 27:43–58PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Ivan Sabolić
    • 1
    Email author
  • Davorka Breljak
    • 1
  • Mario Škarica
    • 1
    • 2
  • Carol M. Herak-Kramberger
    • 1
  1. 1.Unit of Molecular Toxicology, Institute for Medical Research and Occupational HealthZagrebCroatia
  2. 2.School of Medicine, Department of Microbiology and Immunology, Autoimmunity CenterTemple UniversityPhiladelphiaUSA

Personalised recommendations