, Volume 23, Issue 3, pp 399–409 | Cite as

Cancer prevention by bovine lactoferrin: from animal studies to human trial

  • Hiroyuki Tsuda
  • Takahiro Kozu
  • Gen Iinuma
  • Yasuo Ohashi
  • Yutaka Saito
  • Daizo Saito
  • Takayuki Akasu
  • David B. AlexanderEmail author
  • Mitsuru Futakuchi
  • Katsumi Fukamachi
  • Jiegou Xu
  • Tadao Kakizoe
  • Masaaki Iigo


Colorectal cancer (CRC) is one of the most frequently diagnosed cancers and, despite improved colonoscopic screening, CRC is a leading cause of death from cancer. Administration of bovine lactoferrin (bLF) suppresses carcinogenesis in the colon and other organs of test animals, and recently it was shown that ingestion of bLF inhibits the growth of adenomatous polyps in human patients. Here we review work which established bLF as an anti-carcinogenic agent in laboratory animals and the results of a clinical trial which demonstrated that bLF can reduce the risk of colon carcinogenesis in humans.


Bovine lactoferrin Chemoprevention Colorectal cancer 



We thank Shigeru Nawano, Atsushi Otsu, Tomotaka Sobue, and Chikuma Hamada as members of the Independent Data Monitoring Committee; Takahisa Matsuda, Ryuzo Sekiguichi, and Kunihisa Miyakawa for their valuable contributions to the bLF trial; and finally, Takuji Gotoda at the Endoscopic Data Adjudication Committee, Tadakazu Shimoda, a pathologist, Takahiro Fujii, an endoscopist (until June 2003), and Morinaga Milk Industry Ltd., the bLF trial sponsor. We thank Morinaga Milk Industry for providing the bovine lactoferrin and placebo tablets.


  1. Bezault J, Bhimani R, Wiprovnick J et al (1994) Human lactoferrin inhibits growth of solid tumors and development of experimental metastases in mice. Cancer Res 54:2310–2312PubMedGoogle Scholar
  2. Cao R, Farnebo J, Kurimoto M et al (1999) Interleukin-18 acts as an angiogenesis and tumor suppressor. FASEB J 13:2195–2202PubMedGoogle Scholar
  3. Chawla-Sarkar M, Lindner DJ, Liu YF et al (2003) Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis 8:237–249CrossRefPubMedGoogle Scholar
  4. Clemens MJ (2003) Interferons and apoptosis. J Interferon Cytokine Res 23:277–292CrossRefPubMedGoogle Scholar
  5. Cramer E, Pryzwansky KB, Villeval JL et al (1985) Ultrastructural localization of lactoferrin and myeloperoxidase in human neutrophils by immunogold. Blood 65:423–432PubMedGoogle Scholar
  6. de la Rosa G, Yang D, Tewary P et al (2008) Lactoferrin acts as an alarmin to promote the recruitment and activation of APCs and antigen-specific immune responses. J Immunol 180:6868–6876Google Scholar
  7. Freiburghaus C, Janicke B, Lindmark-Mansson H et al (2009) Lactoferricin treatment decreases the rate of cell proliferation of a human colon cancer cell line. J Dairy Sci 92:2477–2484CrossRefPubMedGoogle Scholar
  8. Fujita K, Matsuda E, Sekine K et al (2004a) Lactoferrin enhances Fas expression and apoptosis in the colon mucosa of azoxymethane-treated rats. Carcinogenesis 25:1961–1966CrossRefPubMedGoogle Scholar
  9. Fujita K, Matsuda E, Sekine K et al (2004b) Lactoferrin modifies apoptosis-related gene expression in the colon of the azoxymethane-treated rat. Cancer Lett 213:21–29CrossRefPubMedGoogle Scholar
  10. Gahr M, Speer CP, Damerau B et al (1991) Influence of lactoferrin on the function of human polymorphonuclear leukocytes and monocytes. J Leukoc Biol 49:427–433PubMedGoogle Scholar
  11. Hessle C, Hanson LA, Wold AE (1999) Lactobacilli from human gastrointestinal mucosa are strong stimulators of IL-12 production. Clin Exp Immunol 116:276–282CrossRefPubMedGoogle Scholar
  12. Hofstad B, Vatn MH, Andersen SN et al (1996) Growth of colorectal polyps: redetection and evaluation of unresected polyps for a period of three years. Gut 39:449–456CrossRefPubMedGoogle Scholar
  13. Hwang SA, Wilk KM, Bangale YA et al (2007) Lactoferrin modulation of IL-12 and IL-10 response from activated murine leukocytes. Med Microbiol Immunol 196:171–180CrossRefPubMedGoogle Scholar
  14. Iigo M, Kuhara T, Ushida Y et al (1999) Inhibitory effects of bovine lactoferrin on colon carcinoma 26 lung metastasis in mice. Clin Exp Metastasis 17:35–40CrossRefPubMedGoogle Scholar
  15. Iigo M, Shimamura M, Matsuda E et al (2004) Orally administered bovine lactoferrin induces caspase-1 and interleukin-18 in the mouse intestinal mucosa: a possible explanation for inhibition of carcinogenesis and metastasis. Cytokine 25:36–44CrossRefPubMedGoogle Scholar
  16. Iigo M, Shimamura M, Hirano S et al (2005) Cancer prevention and anti-metastatic effects by oral administration of bovine lactoferrin. In: Takuji T, Hiroyuki T (eds) Carcinogenesis and modification of carcinogenesis. Research Signpost, Kerala, India, pp 229–242Google Scholar
  17. Iigo M, Alexander DB, Long N et al (2009) Anticarcinogenesis pathways activated by bovine lactoferrin in the murine small intestine. Biochimie 91:86–101CrossRefPubMedGoogle Scholar
  18. Kozu T, Iinuma G, Ohashi Y et al (2009) Effect of orally administered bovine lactoferrin on the growth of adenomatous colorectal polyps in a randomized, placebo-controlled clinical trial. Cancer Prev Res (Phila Pa) 2:975–983Google Scholar
  19. Kudo S, Tamura S, Nakajima T et al (1996) Diagnosis of colorectal tumorous lesions by magnifying endoscopy. Gastrointest Endosc 44:8–14CrossRefPubMedGoogle Scholar
  20. Kudo S, Rubio CA, Teixeira CR et al (2001) Pit pattern in colorectal neoplasia: endoscopic magnifying view. Endoscopy 33:367–373PubMedGoogle Scholar
  21. Kuhara T, Iigo M, Itoh T et al (2000) Orally administered lactoferrin exerts an antimetastatic effect and enhances production of IL-18 in the intestinal epithelium. Nutr Cancer 38:192–199CrossRefPubMedGoogle Scholar
  22. Kuhara T, Yamauchi K, Tamura Y et al (2006) Oral administration of lactoferrin increases NK cell activity in mice via increased production of IL-18 and type I IFN in the small intestine. J Interferon Cytokine Res 26:489–499CrossRefPubMedGoogle Scholar
  23. Legrand D, Pierce A, Elass E et al (2008) Lactoferrin structure and functions. Adv Exp Med Biol 606:163–194CrossRefPubMedGoogle Scholar
  24. Levay PF, Viljoen M (1995) Lactoferrin: a general review. Haematologica 80:252–267PubMedGoogle Scholar
  25. Levin B, Lieberman DA, McFarland B et al (2008) Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. CA Cancer J Clin 58:130–160CrossRefPubMedGoogle Scholar
  26. Lonnerdal B, Iyer S (1995) Lactoferrin: molecular structure and biological function. Annu Rev Nutr 15:93–110CrossRefPubMedGoogle Scholar
  27. Masuda C, Wanibuchi H, Sekine K et al (2000) Chemopreventive effects of bovine lactoferrin on N-butyl-N-(4-hydroxybutyl)nitrosamine-induced rat bladder carcinogenesis. Jpn J Cancer Res 91:582–588PubMedGoogle Scholar
  28. McCarty MF, Bielenberg D, Donawho C et al (2002) Evidence for the causal role of endogenous interferon-alpha/beta in the regulation of angiogenesis, tumorigenicity, and metastasis of cutaneous neoplasms. Clin Exp Metastasis 19:609–615CrossRefPubMedGoogle Scholar
  29. McCormick JA, Markey GM, Morris TC et al (1991) Lactoferrin inducible monocyte cytotoxicity defective in esterase deficient monocytes. Br J Haematol 77:287–290CrossRefPubMedGoogle Scholar
  30. McIntosh GH, Regester GO, Le Leu RK et al (1995) Dairy proteins protect against dimethylhydrazine-induced intestinal cancers in rats. J Nutr 125:809–816PubMedGoogle Scholar
  31. Nishiya K, Horwitz DA (1982) Contrasting effects of lactoferrin on human lymphocyte and monocyte natural killer activity and antibody-dependent cell-mediated cytotoxicity. J Immunol 129:2519–2523PubMedGoogle Scholar
  32. Norrby K, Mattsby-Baltzer I, Innocenti M et al (2001) Orally administered bovine lactoferrin systemically inhibits VEGF(165)-mediated angiogenesis in the rat. Int J Cancer 91:236–240CrossRefPubMedGoogle Scholar
  33. Queen MM, Ryan RE, Holzer RG et al (2005) Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Res 65:8896–8904CrossRefPubMedGoogle Scholar
  34. Rehman MU, Buttar QM, Khawaja MI et al (2009) An impending cancer crisis in developing countries: are we ready for the challenge? Asian Pac J Cancer Prev 10:719–720PubMedGoogle Scholar
  35. Sekine K, Watanabe E, Nakamura J et al (1997) Inhibition of azoxymethane-initiated colon tumor by bovine lactoferrin administration in F344 rats. Jpn J Cancer Res 88:523–526PubMedGoogle Scholar
  36. Shau H, Kim A, Golub SH (1992) Modulation of natural killer and lymphokine-activated killer cell cytotoxicity by lactoferrin. J Leukoc Biol 51:343–349PubMedGoogle Scholar
  37. Shimamura M, Yamamoto Y, Ashino H et al (2004) Bovine lactoferrin inhibits tumor-induced angiogenesis. Int J Cancer 111:111–116CrossRefPubMedGoogle Scholar
  38. Sidky YA, Borden EC (1987) Inhibition of angiogenesis by interferons: effects on tumor- and lymphocyte-induced vascular responses. Cancer Res 47:5155–5161PubMedGoogle Scholar
  39. Spadaro M, Curcio C, Varadhachary A et al (2007) Requirement for IFN-gamma, CD8+ T lymphocytes, and NKT cells in talactoferrin-induced inhibition of neu+ tumors. Cancer Res 67:6425–6432CrossRefPubMedGoogle Scholar
  40. Spadaro M, Caorsi C, Ceruti P et al (2008) Lactoferrin, a major defense protein of innate immunity, is a novel maturation factor for human dendritic cells. FASEB J 22:2747–2757CrossRefPubMedGoogle Scholar
  41. Su MY, Ho YP, Chen PC et al (2004) Magnifying endoscopy with indigo carmine contrast for differential diagnosis of neoplastic and nonneoplastic colonic polyps. Dig Dis Sci 49:1123–1127CrossRefPubMedGoogle Scholar
  42. Takeuchi M, Nishizaki Y, Sano O et al (1997) Immunohistochemical and immuno-electron-microscopic detection of interferon-gamma-inducing factor (“interleukin-18”) in mouse intestinal epithelial cells. Cell Tissue Res 289:499–503CrossRefPubMedGoogle Scholar
  43. Tamano S, Sekine K, Takase M et al (2008) Lack of chronic oral toxicity of chemopreventive bovine lactoferrin in F344/DuCrj rats. Asian Pac J Cancer Prev 9:313–316PubMedGoogle Scholar
  44. Tanaka T, Kawabata K, Kohno H et al (2000) Chemopreventive effect of bovine lactoferrin on 4-nitroquinoline 1-oxide-induced tongue carcinogenesis in male F344 rats. Jpn J Cancer Res 91:25–33PubMedGoogle Scholar
  45. Togashi K, Konishi F, Ishizuka T et al (1999) Efficacy of magnifying endoscopy in the differential diagnosis of neoplastic and non-neoplastic polyps of the large bowel. Dis Colon Rectum 42:1602–1608CrossRefPubMedGoogle Scholar
  46. Tsuda H, Sekine K (2000) Milk components as cancer chemopreventive agents. Asian Pac J Cancer Prev 1:277–282PubMedGoogle Scholar
  47. Tsuda H, Sekine K, Nakamura J et al (1998) Inhibition of azoxymethane initiated colon tumor and aberrant crypt foci development by bovine lactoferrin administration in F344 rats. Adv Exp Med Biol 443:273–284PubMedGoogle Scholar
  48. Tsuda H, Sekine K, Uehara N et al (1999) Heterocyclic amine mixture carcinogenesis and its enhancement by caffeine in F344 rats. Cancer Lett 143:229–234CrossRefPubMedGoogle Scholar
  49. Tsuda H, Sekine K, Fujita K et al (2002) Cancer prevention by bovine lactoferrin and underlying mechanisms—a review of experimental and clinical studies. Biochem Cell Biol 80:131–136CrossRefPubMedGoogle Scholar
  50. Turesky RJ, Constable A, Fay LB et al (1999) Interspecies differences in metabolism of heterocyclic aromatic amines by rat and human P450 1A2. Cancer Lett 143:109–112CrossRefPubMedGoogle Scholar
  51. Ushida Y, Sekine K, Kuhara T et al (1998) Inhibitory effects of bovine lactoferrin on intestinal polyposis in the Apc(Min) mouse. Cancer Lett 134:141–145CrossRefPubMedGoogle Scholar
  52. Ushida Y, Sekine K, Kuhara T et al (1999) Possible chemopreventive effects of bovine lactoferrin on esophagus and lung carcinogenesis in the rat. Jpn J Cancer Res 90:262–267PubMedGoogle Scholar
  53. van den Tol MP, ten Raa S, van Grevenstein WM et al (2007) The post-surgical inflammatory response provokes enhanced tumour recurrence: a crucial role for neutrophils. Dig Surg 24:388–394CrossRefPubMedGoogle Scholar
  54. van Rijn JC, Reitsma JB, Stoker J et al (2006) Polyp miss rate determined by tandem colonoscopy: a systematic review. Am J Gastroenterol 101:343–350CrossRefPubMedGoogle Scholar
  55. Varadhachary A, Wolf JS, Petrak K et al (2004) Oral lactoferrin inhibits growth of established tumors and potentiates conventional chemotherapy. Int J Cancer 111:398–403CrossRefPubMedGoogle Scholar
  56. von Marschall Z, Scholz A, Cramer T et al (2003) Effects of interferon alpha on vascular endothelial growth factor gene transcription and tumor angiogenesis. J Natl Cancer Inst 95:437–448CrossRefGoogle Scholar
  57. Wada Y, Yoshida K, Tsutani Y et al (2007) Neutrophil elastase induces cell proliferation and migration by the release of TGF-alpha, PDGF and VEGF in esophageal cell lines. Oncol Rep 17:161–167PubMedGoogle Scholar
  58. Wakabayashi H, Takakura N, Yamauchi K et al (2006) Modulation of immunity-related gene expression in small intestines of mice by oral administration of lactoferrin. Clin Vaccine Immunol 13:239–245CrossRefPubMedGoogle Scholar
  59. Wang WP, Iigo M, Sato J et al (2000) Activation of intestinal mucosal immunity in tumor-bearing mice by lactoferrin. Jpn J Cancer Res 91:1022–1027PubMedGoogle Scholar
  60. Weisburger JH (1993) Heterocyclic amines in cooked foods: possible human carcinogens. Cancer Res 53:2422–2424PubMedGoogle Scholar
  61. Wislez M, Antoine M, Rabbe N et al (2007) Neutrophils promote aerogenous spread of lung adenocarcinoma with bronchioloalveolar carcinoma features. Clin Cancer Res 13:3518–3527CrossRefPubMedGoogle Scholar
  62. Wolf JS, Li D, Taylor RJ et al (2003) Lactoferrin inhibits growth of malignant tumors of the head and neck. ORL J Otorhinolaryngol Relat Spec 65:245–249PubMedGoogle Scholar
  63. Wolf JS, Li G, Varadhachary A et al (2007) Oral lactoferrin results in T cell-dependent tumor inhibition of head and neck squamous cell carcinoma in vivo. Clin Cancer Res 13:1601–1610CrossRefPubMedGoogle Scholar
  64. Yang D, de la Rosa G, Tewary P et al (2009) Alarmins link neutrophils and dendritic cells. Trends Immunol 11:531–537CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Hiroyuki Tsuda
    • 1
    • 7
  • Takahiro Kozu
    • 2
  • Gen Iinuma
    • 3
  • Yasuo Ohashi
    • 4
  • Yutaka Saito
    • 5
  • Daizo Saito
    • 5
  • Takayuki Akasu
    • 6
  • David B. Alexander
    • 1
    • 7
    Email author
  • Mitsuru Futakuchi
    • 7
  • Katsumi Fukamachi
    • 7
  • Jiegou Xu
    • 7
  • Tadao Kakizoe
    • 8
  • Masaaki Iigo
    • 1
    • 7
  1. 1.Nanotoxicology ProjectGraduate School of Medical Sciences, Nagoya City UniversityNagoyaJapan
  2. 2.Cancer Screening DivisionNational Cancer Center, Research Center for Cancer Prevention and ScreeningTokyoJapan
  3. 3.Diagnostic Radiology DivisionNational Cancer Center HospitalTokyoJapan
  4. 4.Department of Biostatistics, School of Health Sciences and NursingThe University of TokyoTokyoJapan
  5. 5.Endoscopy DivisionNational Cancer Center HospitalTokyoJapan
  6. 6.Colorectal Surgery DivisionNational Cancer Center HospitalTokyoJapan
  7. 7.Department of Molecular ToxicologyGraduate School of Medical Sciences, Nagoya City UniversityNagoyaJapan
  8. 8.National Cancer CenterTokyoJapan

Personalised recommendations