Advertisement

BioMetals

, 23:129 | Cite as

Temporal production of the two Bacillus anthracis siderophores, petrobactin and bacillibactin

  • Melissa K. Wilson
  • Rebecca J. Abergel
  • Jean E. L. Arceneaux
  • Kenneth N. Raymond
  • B. Rowe ByersEmail author
Article

Abstract

Bacillus anthracis secretes two siderophores, petrobactin (PB) and bacillibactin (BB). These siderophores were temporally produced during germination and outgrowth of spores (the usual infectious form of B. anthracis) in low-iron medium. The siderophore PB was made first while BB secretion began several hours later. Spore outgrowth early in an infection may require PB, whereas delayed BB production suggests a role for BB in the later stages of the infection. Incubation of cultures (inoculated as vegetative cells) at 37°C, as compared to 2°C, increased PB production and decreased secretion of BB, suggesting that the production of PB and BB responded to the host temperature signal. The dual siderophores of B. anthracis may fulfill independent roles in the life cycle of B. anthracis.

Keywords

Siderophores Petrobactin Bacillibactin Iron Anthrax 

Notes

Acknowledgments

This research was supported by the Intramural Research Grant Program at the University of Mississippi Medical Center (BRB and JELA) and by National Institutes of Health Grant AI11744 (KNR). We thank P. Worsham for B. anthracis USAMRIID.

References

  1. Abergel RJ, Wilson MK, Arceneaux JEL, Hoette TM, Strong RK, Byers BR, Raymond KN (2006) The anthrax pathogen evades the mammalian immune system through stealth siderophore production. Proc Nat Acad Sci USA 103:18499–185033CrossRefPubMedGoogle Scholar
  2. Abergel RJ, Zawadzka AM, Raymond KN (2008) Petrobactin-mediated iron transport in pathogenic bacteria. J Am Chem Soc 130:2124–2125CrossRefPubMedGoogle Scholar
  3. Bergeron RJ, Huang GF, Smith RE, Bharti N, McManis JS, Butler A (2004) A total synthesis and structure revision of petrobactin. Tetrahedron 59:2007–2014CrossRefGoogle Scholar
  4. Brickman TJ, Armstrong SK (2009) Temporal signaling and differential expression of Bordetella iron transport systems: the role of ferrimones and positive regulators. BioMetals 22:33–41CrossRefPubMedGoogle Scholar
  5. Byers BR, Arceneaux JEL (1998) Microbial iron transport: iron acquisition by in microorganisms, plants, and animals, vol. 35 metal ions in biological systems. M Dekker, New York, pp 37–66Google Scholar
  6. Cendrowski S, MacArthur W, Hanna P (2004) Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol Microbiol 51:407–417CrossRefPubMedGoogle Scholar
  7. Dertz EA, Xu J, Stintzi A, Raymond KN (2006) Bacillibactin-mediated iron transport in Bacillus subtilis. J Am Chem Soc 128:22–23CrossRefPubMedGoogle Scholar
  8. Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S, Aderem A (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestering iron. Nature 432:917–921CrossRefPubMedGoogle Scholar
  9. Fox DT, Hotta K, Kim CY, Kippisch AT (2008) The missing link in petrobactin biosynthesis: asbF encodes a (-)-3-dehydroshikimate dehydratase. Biochemistry 47:12251–12253CrossRefPubMedGoogle Scholar
  10. Franza T, Mahe B, Expert D (2004) Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection. Mol Microbiol 55:261–275CrossRefGoogle Scholar
  11. Garner BL, Arceneaux JEL, Byers BR (2004) Temperature control of a 3,4-dihydroxybenzoate (protocatechuate)-based siderophore in Bacillus anthracis. Curr Microbiol 49:89–94PubMedGoogle Scholar
  12. Goetz DH, Holmes MA, Borregaard NM, Blum E, Raymond KN, Strong RK (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10:1033–1043CrossRefPubMedGoogle Scholar
  13. Koppisch AT, Browder CC, Moe AL, Shelley JT, Kinkel BA, Hersman LE, Iyer S, Ruggiero CE (2005) Petrobactin is the primary siderophore synthesized by Bacillus anthracis str. Sterne under conditions of iron starvation. BioMetals 18:577–585CrossRefPubMedGoogle Scholar
  14. Koppisch AT, Hotta K, Fox DT, Ruggiero CE, Kim CY, Sanchez T, Iyer S, Browder CC, Unkefer PJ, Unkefer CJ (2008a) Biosynthesis of the 3,4-dihydroxybenzoate moieties of petrobactin by Bacillus anthracis. J Org Chem 73:5759–5765CrossRefPubMedGoogle Scholar
  15. Koppisch AT, Dhungana S, Hill KK, Boukhalfa H, Heine HS, Colip LA, Romero RB, Shou Y, Ticknor LO, Marrone BL, Hersman LE, Iyer S, Ruggiero CE (2008b) Petrobactin is produced by both pathogenic and non-pathogenic isolates of the Bacillus cereus group of bacteria. BioMetals 21:581–589CrossRefPubMedGoogle Scholar
  16. Lee JY, Janes BK, Passalacqua KD, Pfleger BF, Bergman NH, Lui H, Hakasson K, Somu RV, Aldrich CC, Cendrowski S, Hanna PC, Sherman DH (2007) Biosynthetic analysis of the petrobactin siderophore pathway from Bacillus anthracis. J Bacteriol 189:1698–1710CrossRefPubMedGoogle Scholar
  17. May JJ, Wendrich TM, Marahiel MA (2001) The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J Biol Chem 276:7209–7217CrossRefPubMedGoogle Scholar
  18. Miethke M, Klotz O, Linne U, May JJ, Beckering CL, Marahiel MA (2006) Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol Microbiol 61:1413–1427CrossRefPubMedGoogle Scholar
  19. Mock M, Fouet A (2001) Anthrax. Annu Rev Microbiol 55:647–671CrossRefPubMedGoogle Scholar
  20. Pfleger BF, Kim Y, Nusca TD, Maltseva N, Lee JY, Rath CM, Scaglione JB, Janes BK, Anderson EC, Bergman NH, Hanna PC, Joachimiak A, Sherman DH (2008) (200* Structural, functional analysis of AsbF: origin of the stealth 3, 4-dihydroxybenzoic acid subunit for petrobactin biosynthesis. Proc Nat Acad Sci USA 105:17133–17138CrossRefPubMedGoogle Scholar
  21. Russell BH, Rango V, Keene DR, Xu Y (2007) Bacillus anthracis internalization by human fibroblasts and epithelial cells. Cell Microbiol 9:1262–1274CrossRefPubMedGoogle Scholar
  22. Sirard JC, Mock M, Fouet A (1994) The three Bacillus anthracis toxin genes are coordinately regulated by bicarbonate and temperature. J Bacteriol 176:5188–5192PubMedGoogle Scholar
  23. Turnbull PCB, Frawley DA, Bull RL (2007) Heat activation/shock temperatures for Bacillus anthracis spores and the issue of spore plate counts versus true numbers of spores. J Microbiol Methods 68:353–357CrossRefPubMedGoogle Scholar
  24. Wilson MK, Abergel RJ, Raymond KN, Arceneaux JEL, Byers BR (2006) Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Biochem Biophys Res Commun 348:320–325CrossRefPubMedGoogle Scholar
  25. Wilson AC, Soyer M, Hoch JA, Perego M (2008) The bicarbonate transporter is essential for Bacillus anthracis lethality. Plos Pathogens 4:1–10Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Melissa K. Wilson
    • 1
    • 3
  • Rebecca J. Abergel
    • 2
    • 4
  • Jean E. L. Arceneaux
    • 1
  • Kenneth N. Raymond
    • 2
  • B. Rowe Byers
    • 1
    Email author
  1. 1.Department of MicrobiologyUniversity of Mississippi Medical CenterJacksonUSA
  2. 2.Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  3. 3.Department of Microbiology and ImmunologyUniformed Services University of the Health SciencesBethesdaUSA
  4. 4.Chemical Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations