BioMetals

, 23:59 | Cite as

First solid state alkaline-earth complexes of monensic acid A (MonH): crystal structure of [M(Mon)2(H2O)2] (M = Mg, Ca), spectral properties and cytotoxicity against aerobic Gram-positive bacteria

  • Ivayla N. Pantcheva
  • Rumyana Zhorova
  • Mariana Mitewa
  • Svetlana Simova
  • Heike Mayer-Figge
  • William S. Sheldrick
Article

Abstract

Alkaline-earth metal complexes of the monoanionic form of the polyether ionophore monensin A were isolated for the first time in solid state and were structurally characterized using various spectroscopic methods (IR, NMR, FAB-MS). The stoichiometric reaction of monensic acid (MonH) with M2+ (M = Mg, Ca) in the presence of an organic base leads to the formation of mononuclear complexes of composition [M(Mon)2(H2O)2]. The structures of magnesium (1) and calcium (2) monensin complexes in the solid state were established by single crystal X-ray crystallography. The complexes crystallize as [Mg(Mon)2(H2O)2]·5MeCN (1) and [Ca(Mon)2(H2O)2]·H2O·5MeCN (2) in the monoclinic P21 space group. The alkaline-earth metal ion is placed in a distorted octahedral environment, defined by two monensin anions acting as bidentate ligands in the equatorial plane of the complex as well as by two water molecules occupying the axial positions of the inner coordination sphere. The bactericidal activity of 1 and 2 was evaluated against aerobic Gram-positive microorganisms applying the double layer agar hole diffusion method.

Keywords

Monovalent carboxylic ionophore Alkaline-earth monensin complexes Crystal structure IR NMR FAB-MS Bactericidal activity 

Notes

Acknowledgements

The present research is financially supported from the National Science Fund (NSF), DO-02-84/2009. SS is grateful to NSF (UNA-17/2005) for the purchase of Bruker Avance AVII+ 600 NMR spectrometer. The authors are thankful to Assoc. Prof. A. Nakov and MSci P. Dorkov (BIOVET Ltd.) for supplying sodium monensin.

References

  1. Agtarap A, Chamberlin JW, Pinkerton M, Steinrauf LK (1967) The structure of monensic acid, a new biologically active compound. J Am Chem Soc 89:5737–5739CrossRefPubMedGoogle Scholar
  2. Ajaz AA, Robinson JA, Turner DL (1987) Biosynthesis of the polyether ionophore antibiotic monensin A: assignment of the carbon-13 and proton n. m. r. spectra of monensin A by two-dimensional spectroscopy. Incorporation of oxygen-18 labeled molecular oxygen. J Chem Soc Perkin Trans 1:27–36CrossRefGoogle Scholar
  3. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:5–16CrossRefPubMedGoogle Scholar
  4. Augustine PC, Smith CK, Danforth HD, Ruff MD (1987) Effect of ionophorous anticoccidials on invasion and development of Eimeria: comparison of sensitive and resistant isolates and correlation with drug uptake. Poultry Sci 66:960–965Google Scholar
  5. Augustine PC, Watkins KL, Danforth HD (1992) Effect of monensin on ultrastructure and cellular invasion by the turkey coccidia Eimeria adenoeides and Eimeria meleagrimitis. Poultry Sci 71:970–978Google Scholar
  6. Berg HH, Hamill RL (1978) The isolation and characterization of narazin, a new polyether antibiotic. J Antibiot 31:1–6PubMedGoogle Scholar
  7. Briggs RW, Hinton JF (1978) Thallium-205 and proton nuclear magnetic resonance investigation of the complexation of thallium by the ionophores monensin and nigericin. Biochemistry 17:5576–5578CrossRefPubMedGoogle Scholar
  8. Chamberlin JW, Agtarap A (1970) Observations on the mass spectrometry of monensin and related compounds. Org Mass Spectrom 3:271–285CrossRefGoogle Scholar
  9. Chappe LR (1979) The site of action of the anticoccidial salinomycin (Coxistac). J Parasitol 65:137–143CrossRefGoogle Scholar
  10. Cox BG, Vantruong N, Rzeszotarska J, Schneider H (1984) Rates and equilibria of alkali metal and silver ion complex formation with monensin in ethanol. J Am Chem Soc 106:5965–5969CrossRefGoogle Scholar
  11. Dassie SA, Baruzzi AM (2002) Alkaline-earth cation transfer assisted by monensin across the water vertical bar 1,2-dichloroethane interface in the presence of alkali cations. J Electroanal Chem 522:158–166CrossRefGoogle Scholar
  12. Dorkov P, Pantcheva IN, Sheldrick WS, Mayer-Figge H, Petrova R, Mitewa M (2008) Synthesis, structure and antimicrobial activity of manganese(II) and cobalt(II) complexes of the polyether ionophore antibiotic sodium monensin A. J Inorg Biochem 102:26–32CrossRefPubMedGoogle Scholar
  13. Duax WL, Smith GD, Strong PD (1980) Complexation of metal ions by monensin—crystal and molecular structure of hydrated and anhydrous crystal forms of sodium monensin. J Am Chem Soc 102:6725–6729CrossRefGoogle Scholar
  14. Folz SD, Lee BL, Nowakowski LH, Conder GA (1988) Anticoccidial evaluation of halofuginone, lasalocid, maduramicin, monensin and salinomycin. Vet Parasitol 28:1–9CrossRefPubMedGoogle Scholar
  15. Garcla-Rosas J, Schneider H, Cox BG (1983) Silver complexation by the ionophorous antibiotic monensin in nonaqueous solvents. J Phys Chem 87:5467–5472CrossRefGoogle Scholar
  16. Gertenbach PG, Popov AI (1975) Solution chemistry of monensin and its alkali-metal ion complexes—potentiometric and spectroscopic studies. J Am Chem Soc 97:4738–4744CrossRefGoogle Scholar
  17. Hamidinia SA, Shimelis OI, Tan B, Erdahl WL, Chapman CJ, Renkes GD, Taylor RW, Pfeiffer DR (2002) Monensin mediates a rapid and selective transport of Pb2+—possible application of monensin for the treatment of Pb2+ intoxication. J Biol Chem 277:38111–38120CrossRefPubMedGoogle Scholar
  18. Hamidinia SA, Tan B, Erdahl WL, Chapman CJ, Taylor RW, Pfeiffer DR (2004) The ionophore nigericin transports Pb2+ with high activity and selectivity: a comparison to monensin and ionomycin. Biochemistry 43:15956–15965CrossRefPubMedGoogle Scholar
  19. Hebrant M, Mimouni M, Tissier M, Pointud Y, Juillard J, Dauphin G (1992) Complexing ability of ionophore monensin for divalent cations. New J Chem 16:999–1008Google Scholar
  20. Huczynski A, Michalak D, Przybylski P, Brzezinski B, Bartl F (2006a) Monensin A benzyl ester and its complexes with monovalent metal cations studied by spectroscopic, mass spectrometry and semiempirical methods. J Mol Struct 797:99–110CrossRefGoogle Scholar
  21. Huczynski A, Przybylski P, Brzezinski B (2006b) Complexes of monensin A methyl ester with Mg2+, Ca2+, Sr2+, Ba2+ cations studied by electrospray ionization mass spectrometry and PM5 semiempirical method. J Mol Struct 788:176–183CrossRefGoogle Scholar
  22. Huczynski A, Przybylski P, Brzezinski B, Bartl F (2006c) Monensin A methyl ester complexes with Li+, Na+ and K+ cations studied by ESI–MS, 1H- and 13C-NMR, FTIR, as well as PM5 semiempirical method. Biopolymers 81:282–294CrossRefPubMedGoogle Scholar
  23. Huczynski A, Przybylski P, Brzezinski B, Bartl F (2006d) Spectroscopic, mass spectrometry, and semiempirical investigation of a new ester of monensin A with ethylene glycol and its complexes with monovalent metal cations. Biopolymers 82:491–503CrossRefPubMedGoogle Scholar
  24. Huczynski A, Przybylski P, Brzezinski B (2007a) NMR, FTIR, ESI–MS and semiempirical study of a new 2-(2-hydroxyethoxy)ethyl ester of monensin A and its complexes with alkali metal cations. Tetrahedron 63:8831–8839CrossRefGoogle Scholar
  25. Huczynski A, Przybylski P, Schroeder G, Brzezinski B (2007b) Investigation of complex structures of a new 2-hydroxyethyl ester of monensin A with Mg2+, Ca2+, Sr2+, Ba2+ cations using electrospray ionization mass spectrometry and semiempirical PM5 methods. J Mol Struct 829:111–119CrossRefGoogle Scholar
  26. Huczynski A, Ratajczak-Sitarz M, Katrusiak A, Brzezinski B (2007c) Molecular structure of the 1:1 inclusion complex of monensin A lithium salt with acetonitrile. J Mol Struct 871:92–97CrossRefGoogle Scholar
  27. Huczynski A, Brzezinski B, Bartl F (2008a) Structures of complexes of benzyl and allyl esters of monensin A with Mg2+, Ca2+, Sr2+, Ba2+ cations studied by ESI–MS and PM5 methods. J Mol Struct 886:9–16CrossRefGoogle Scholar
  28. Huczynski A, Lowicki D, Brzezinski B, Bartl F (2008b) Spectroscopic, mass spectrometry and semiempirical investigation of a new 2-methoxyethyl ester of monensin A and its complexes with Li+, Na+ and K+ cations. J Mol Struct 874:89–100CrossRefGoogle Scholar
  29. Huczynski A, Lowicki D, Brzezinski B, Bartl F (2008c) Spectroscopic, mass spectrometry, and semiempirical investigations of a new 2-(2-methoxyethoxy)ethyl ester of monensin A and its complexes with monovalent cations. J Mol Struct 879:14–24CrossRefGoogle Scholar
  30. Huczynski A, Ratajczak-Sitarz M, Katrusiak A, Brzezinski B (2008d) Molecular structure of rubidium six-coordinated dihydrate complex with monensin A. J Mol Struct 888:224–229CrossRefGoogle Scholar
  31. Johnson SM, Herrin J, Liu SJ, Paul IC (1970a) Crystal structure of a barium complex of antibiotic X-537A, Ba(C34H53O8)2·H2O. J Chem Soc D Chem Commun 2:72–73CrossRefGoogle Scholar
  32. Johnson SM, Herrin J, Liu SJ, Paul IC (1970b) Crystal and molecular structure of the barium salt of an antibiotic containing a high proportion of oxygen. J Am Chem Soc 92:4428–4435CrossRefPubMedGoogle Scholar
  33. Kevin DA II, Meujo DAF, Hamann MT (2009) Polyether ionophores: broad-spectrum and promising biologically active molecules for the control of drug resistant bacteria and parasites. Expert Opin Drug Discov 4:109–146CrossRefGoogle Scholar
  34. Koinarski V, Sherkov SN (1987) Effect of anticoccidial preparations in the prevention of coccidiosis in turkeys caused by Eimeria adenoides. Vet Med Nauki 24:81–85PubMedGoogle Scholar
  35. Liu WC, Slusarchyk DS, Astle G, Trejo WH, Brown NE, Meyers E (1978) Ionomycin, a new polyether antibiotic. J Antibiot 9:815–819Google Scholar
  36. Long PL, Jeffers TK (1982) Studies on the stage of action of ionophorous antibiotics against Eimeria. J Parasitol 68:363–371CrossRefPubMedGoogle Scholar
  37. Lutz WK, Winkler FK, Dunitz JD (1971) Crystal structure of the antibiotic monensin: similarities and differences between free acid and metal complex. Helv Chim Acta 54:1103–1108CrossRefPubMedGoogle Scholar
  38. Martinek T, Riddell FG, Wilson C, Weller CT (2000) The conformations of monensin A metal complexes in solution determined by NMR spectroscopy. J Chem Soc Perkin Trans 2:35–41Google Scholar
  39. Mimouni M, Pointud Y, Juillard J (1994) Interactions in methanol of divalent metal cations with bacterial ionophores, lasalocid and monensin—thermodynamical aspects. Bull Soc Chim Fr 131:58–65Google Scholar
  40. Mimouni M, Hebrant M, Dauphin G, Juillard J (1996) Monovalent cation salts of the bacterial ionophore monensin in methanol. Structural aspects from NMR experiments. J Chem Res 6:278–279Google Scholar
  41. Pangborn W, Duax WL, Langs D (1987) The hydrated potassium complex of the ionophore monensin A. J Am Chem Soc 109:2163–2165CrossRefGoogle Scholar
  42. Pantcheva IN, Mitewa M, Sheldrick WS, Oppel IM, Zhorova R, Dorkov P (2008) First divalent metal complexes of the polyether ionophore monensin A: X-ray structures of [Co(Mon)2(H2O)2] and [Mn(Mon)2(H2O)2] and their bactericidal properties. Curr Drug Discov Technol 5:154–161CrossRefPubMedGoogle Scholar
  43. Pantcheva IN, Dorkov P, Atanasov VN, Mitewa M, Shivachev BL, Nikolova RP, Mayer-Figge H, Sheldrick WS (2009) Crystal structure and properties of the copper(II) complex of sodium monensin A. J Inorg Biochem. doi: 10.1016/j.jinorgbio.2009.08.007
  44. Paz FAA, Gates PJ, Fowler S, Gallimore A, Harvey B, Lopes NP, Stark CBW, Staunton J, Klinowski J, Spencer JB (2003) Sodium monensin dihydrate. Acta Cryst E59:m1050–m1052Google Scholar
  45. Riddell FG (2002) Structure, conformation, and mechanism in the membrane transport of alkali metal ions by ionophoric antibiotics. Chirality 14:121–125CrossRefPubMedGoogle Scholar
  46. Rzeszotarska J, Wagner-Czauderna E, Kalinowski MK (1994) Complexation of Tl+ ions by monensin anion in binary mixtures of dipolar aprotic solvents. J Chem Res 10:400–401Google Scholar
  47. Sheldrick G (1990) SHELXS-97. Program for crystal structure solution. Institut für Anorganische Chemie der Universität, Göttingen, GermanyGoogle Scholar
  48. Sheldrick G (1997) SHELXL-97. Program for crystal structure refinement. Institut für Anorganische Chemie der Universität, Göttingen, GermanyGoogle Scholar
  49. Stern PH (1977) Ionophores: chemistry, physiology and potential applications to bone biology. Clin Orthop Relat Res 122:273–298PubMedGoogle Scholar
  50. Stiles MK, Craig ME, Gunnel SL, Pfeiffer DR, Taylor DR (1991) The formation constants of ionomycin with divalent cations in 80% methanol/water. J Biol Chem 266:8336–8342PubMedGoogle Scholar
  51. Varga I, Sreter T (1996) Efficacy of a monensin-duokvin combination against Eimeria acervulina in chickens. Folia Parasitol (Praha) 43:153–155Google Scholar
  52. Volmer DA, Lock CM (1998) Electrospray ionization and collision-induced dissociation of antibiotic polyether ionophores. Rapid Commun Mass Spectrom 12:157–164CrossRefPubMedGoogle Scholar
  53. Wagner-Czauderna E, Rzeszotarska J, Orlowska E, Kalinowski MK (1997) Complexing ability of monensin anion for alkali metal cations in binary mixtures of dipolar aprotic solvents. Phys Chem Chem Phys 101:1154–1157Google Scholar
  54. Walba DM, Hermsmeier M, Haltiwanger RC, Noordik JH (1986) Crystal structures of monensin B lithium and silver salts. J Org Chem 51:245–247CrossRefGoogle Scholar
  55. Wang Z, Suo X, Xia X, Shen J (2006) Influence of monensin on cation influx and Na+ -K+ -ATPase activity of Eimeria tenella sporozoites in vitro. J Parasitol 92:1092–1096CrossRefPubMedGoogle Scholar
  56. Westley JW, Liu CM, Evans RHJr, Sello LH, Troupe N, Hermann T (1983) Preparation, properties and biological activity of natural and semisynthetic urethanes of monensin. J Antibiot 36:1195–1200PubMedGoogle Scholar
  57. Yildirim SO, McKee V, Khardli FZ, Mimouni M, Hadda TB (2007) Rubidium(I) monensinate dihydrate. Acta Cryst E64:m154–m155Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Ivayla N. Pantcheva
    • 1
  • Rumyana Zhorova
    • 1
  • Mariana Mitewa
    • 1
  • Svetlana Simova
    • 2
  • Heike Mayer-Figge
    • 3
  • William S. Sheldrick
    • 3
  1. 1.Laboratory on Biocoordination and Bioanalytical Chemistry, Department of Analytical Chemistry, Faculty of ChemistrySofia UniversitySofiaBulgaria
  2. 2.Institute of Organic Chemistry with Center of PhytochemistryBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Lehrstuhl für Analytische ChemieRuhr-Universität BochumBochumGermany

Personalised recommendations