BioMetals

, Volume 22, Issue 6, pp 1103–1114 | Cite as

Assessment of chronic mercury exposure within the U.S. population, National Health and Nutrition Examination Survey, 1999–2006

Article

Abstract

The purpose of this study was to assess chronic mercury exposure within the US population. Time trends were analyzed for blood inorganic mercury (I-Hg) levels in 6,174 women, ages 18–49, in the NHANES, 1999–2006 data sets. Multivariate logistic regression distinguished a significant, direct correlation within the US population between I-Hg detection and years since the start of the survey (OR = 1.49, P < 0.001). Within this population, I-Hg detection rose sharply from 2% in 1999–2000 to 30% in 2005–2006. In addition, the population averaged mean I-Hg concentration rose significantly over that same period from 0.33 to 0.39 μ/L (Anova, P < 0.001). In a separate analysis, multivariate logistic regression indicated that I-Hg detection was significantly associated with age (OR = 1.02, P < 0.001). Furthermore, multivariate logistic regression revealed significant associations of both I-Hg detection and mean concentration with biomarkers for the main targets of mercury deposition and effect: the liver, immune system, and pituitary. This study provides compelling evidence that I-Hg deposition within the human body is a cumulative process, increasing with age and in the population over time, since 1999, as a result of chronic mercury exposure. Furthermore, our results indicate that I-Hg deposition is associated with the significant biological markers for main targets of exposure, deposition, and effect. Accumulation of focal I-Hg deposits within the human body due to chronic mercury exposure provides a mechanism which suggests a time dependent rise in the population risks for associated disease.

Keywords

Mercury NHANES Pituitary Luteinizing hormone Autism Alzheimer’s disease 

Abbreviations

NHANES

National Health and Nutritional Survey

I-Hg

Blood inorganic mercury

CH3Hg

Methyl mercury

T-Hg

Blood, total mercury

U-Hg

Urinary mercury

Hg++

Mercuric ions

Hg

Elemental mercury

LH

Luteinizing hormone

WBC

White blood cell count

AD

Alzheimer’s disease

OR

Odds ratio

CI

Confidence interval

P(I-Hg detect)

Probability of I-Hg detection

References

  1. Adams JB, Romdalvik J, Ramanujam VM, Legator MS (2007) Mercury, lead, and zinc in baby teeth of children with autism versus controls. J Toxicol Environ Health A 70:1046–1051. doi:10.1080/15287390601172080 CrossRefPubMedGoogle Scholar
  2. Anonymous (2007) The Madison declaration on mercury pollution. In: International conference on mercury as a global pollutant. Ambio 36:62–65Google Scholar
  3. Axelrad DA, Bellinger DC, Ryan LM, Woodruff TJ (2007) Dose-response relationship of prenatal mercury exposure and IQ: an integrative analysis of epidemiologic data. Environ Health Perspect 115:609–615PubMedGoogle Scholar
  4. Bakir F, Damluji SF, Amin-Zaki L, Murtadha M, Khalidi A, al-Rawi NY, Tikriti S, Dahahir HI, Clarkson TW, Smith JC, Doherty RA (1973) Methylmercury poisoning in Iraq. Science 181:230–241. doi:10.1126/science.181.4096.230 CrossRefPubMedGoogle Scholar
  5. Barron AM, Fuller SJ, Verdile G, Martins RN (2006) Reproductive hormones modulate oxidative stress in Alzheimer’s disease. Antioxid Redox Signal 8:2047–2059. doi:10.1089/ars.2006.8.2047 CrossRefPubMedGoogle Scholar
  6. Berlin M (1986) Mercury. In: Friberg L, Nordberg O, Vouk VB (eds) Handbook on the toxicology of metals. Elsevier, Amsterdam, pp 396–409Google Scholar
  7. Bernard S, Enayati A, Redwood L, Roger H, Binstock T (2001) Autism: a novel form of mercury poisoning. Med Hypotheses 56:462–471. doi:10.1054/mehy.2000.1281 CrossRefPubMedGoogle Scholar
  8. Bernard S, Enayati A, Roger H, Binstock T, Redwood L (2002) The role of mercury in the pathogenesis of autism. Mol Psychiatry 7(Suppl 2):S42–S43. doi:10.1038/sj.mp.4001177 CrossRefPubMedGoogle Scholar
  9. Bornhorst JA, Hunt JW, Urry FM, McMillin GA (2005) Comparison of sample preservation methods for clinical trace element analysis by inductively coupled plasma mass spectrometry. Am J Clin Pathol 123:578–583. doi:10.1309/L241WUER8831GLWB CrossRefPubMedGoogle Scholar
  10. Budtz-Jorgensen E, Grandjean P, Jorgensen PJ, Weihe P, Keiding N (2004) Association between mercury concentrations in blood and hair in methylmercury-exposed subjects at different ages. Environ Res 95:385–393. doi:10.1016/j.envres.2003.11.001 CrossRefPubMedGoogle Scholar
  11. Burbacher TM, Shen DD, Liberato N, Grant KS, Cernichiari E, Clarkson T (2005) Comparison of blood and brain mercury levels in infant monkeys exposed to methylmercury or vaccines containing thimerosal. Environ Health Perspect 113:1015–1021PubMedCrossRefGoogle Scholar
  12. Casadesus G, Atwood CS, Zhu X, Hartzler AW, Webber KM, Perry G, Bowen RL, Smith MA (2005) Evidence for the role of gonadotropin hormones in the development of Alzheimer disease. Cell Mol Life Sci 62:293–298. doi:10.1007/s00018-004-4384-0 CrossRefPubMedGoogle Scholar
  13. Chen CY, Liu CY, Su WC, Huang SL, Lin KM (2007) Factors associated with the diagnosis of neurodevelopmental disorders: a population-based longitudinal study. Pediatrics 119:e435–e443. doi:10.1542/peds.2006-1477 CrossRefPubMedGoogle Scholar
  14. Christopher SJ, Long SE, Rearick MS, Fassett JD (2001) Development of isotope dilution cold vapor inductively coupled plasma mass spectrometry and its application to the certification of mercury in NIST standard reference materials. Anal Chem 73:2190–2199. doi:10.1021/ac0013002 CrossRefPubMedGoogle Scholar
  15. Clarkson TW (2002) The three modern faces of mercury. Environ Health Perspect 110(Suppl 1):11–23PubMedGoogle Scholar
  16. Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury—current exposures and clinical manifestations. N Engl J Med 349:1731–1737. doi:10.1056/NEJMra022471 CrossRefPubMedGoogle Scholar
  17. Cornett CR, Ehmann WD, Wekstein DR, Markesbery WR (1998) Trace elements in Alzheimer’s disease pituitary glands. Biol Trace Elem Res 62:107–114. doi:10.1007/BF02820026 CrossRefPubMedGoogle Scholar
  18. Counter SA, Buchanan LH (2004) Mercury exposure in children: a review. Toxicol Appl Pharmacol 198:209–230. doi:10.1016/j.taap.2003.11.032 CrossRefPubMedGoogle Scholar
  19. Davidson PW, Myers GJ, Weiss B, Shamlaye CF, Cox C (2006) Prenatal methyl mercury exposure from fish consumption and child development: a review of evidence and perspectives from the Seychelles Child Development Study. Neurotoxicology 27:1106–1109. doi:10.1016/j.neuro.2006.03.024 CrossRefPubMedGoogle Scholar
  20. Davis LE, Kornfeld M, Mooney HS, Fiedler KJ, Haaland KY, Orrison WW, Cernichiari E, Clarkson TW (1994) Methylmercury poisoning: long-term clinical, radiological, toxicological, and pathological studies of an affected family. Ann Neurol 35:680–688. doi:10.1002/ana.410350608 CrossRefPubMedGoogle Scholar
  21. Farris FF, Dedrick RL, Allen PV, Smith JC (1993) Physiological model for the pharmacokinetics of methyl mercury in the growing rat. Toxicol Appl Pharmacol 119:74–90. doi:10.1006/taap.1993.1046 CrossRefPubMedGoogle Scholar
  22. Gallagher JD, Noelle RJ, McCann FV (1995) Mercury suppression of a potassium current in human B lymphocytes. Cell Signal 7:31–38. doi:10.1016/0898-6568(93)00065-6 CrossRefPubMedGoogle Scholar
  23. Geier DA, Geier MR (2006) A prospective assessment of porphyrins in autistic disorders: a potential marker for heavy metal exposure. Neurotox Res 10:57–64CrossRefPubMedGoogle Scholar
  24. Geier DA, Geier MR (2007) A prospective study of mercury toxicity biomarkers in autistic spectrum disorders. J Toxicol Environ Health A 70:1723–1730. doi:10.1080/15287390701457712 CrossRefPubMedGoogle Scholar
  25. Hemdan NY, Lehmann I, Wichmann G, Lehmann J, Emmrich F, Sack U (2007) Immunomodulation by mercuric chloride in vitro: application of different cell activation pathways. Clin Exp Immunol 148:325–337. doi:10.1111/j.1365-2249.2007.03338.x CrossRefPubMedGoogle Scholar
  26. Hock C, Drasch G, Golombowski S, Muller-Spahn F, Willershausen-Zonnchen B, Schwarz P, Hock U, Growdon JH, Nitsch RM (1998) Increased blood mercury levels in patients with Alzheimer’s disease. J Neural Transm 105:59–68. doi:10.1007/s007020050038 CrossRefPubMedGoogle Scholar
  27. Hultman P, Hansson-Georgiadis H (1999) Methyl mercury-induced autoimmunity in mice. Toxicol Appl Pharmacol 154:203–211. doi:10.1006/taap.1998.8576 CrossRefPubMedGoogle Scholar
  28. Kawada J, Nishida M, Yoshimura Y, Mitani K (1980) Effects of organic and inorganic mercurials on thyroidal functions. J Pharmacobiodyn 3:149–159PubMedGoogle Scholar
  29. Khan A, Ashcroft AE, Higenell V, Korchazhkina OV, Exley C (2005) Metals accelerate the formation and direct the structure of amyloid fibrils of NAC. J Inorg Biochem 99:1920–1927. doi:10.1016/j.jinorgbio.2005.06.018 CrossRefPubMedGoogle Scholar
  30. Magos L, Clarkson TW (1972) Atomic absorption determination of total, inorganic, and organic mercury in blood. J Assoc Off Anal Chem 55:966–971PubMedGoogle Scholar
  31. Mahaffey KR, Clickner RP, Bodurow CC (2004) Blood organic mercury and dietary mercury intake: National Health and Nutrition Examination Survey, 1999 and 2000. Environ Health Perspect 112:562–570PubMedGoogle Scholar
  32. Mahaffey KR, Clickner RP, Jeffries RA (2009) Adult women’s blood mercury concentrations vary regionally in the United States: association with patterns of fish consumption (NHANES 1999–2004). Environ Health Perspect 117:47–53PubMedGoogle Scholar
  33. Nataf R, Skorupka C, Amet L, Lam A, Springbett A, Lathe R (2006) Porphyrinuria in childhood autistic disorder: implications for environmental toxicity. Toxicol Appl Pharmacol 214:99–108. doi:10.1016/j.taap.2006.04.008 CrossRefPubMedGoogle Scholar
  34. Nishida M, Muraoka K, Nishikawa K, Takagi T, Kawada J (1989) Differential effects of methylmercuric chloride and mercuric chloride on the histochemistry of rat thyroid peroxidase and the thyroid peroxidase activity of isolated pig thyroid cells. J Histochem Cytochem 37:723–727PubMedGoogle Scholar
  35. Palmer RF, Blanchard S, Stein Z, Mandell D, Miller C (2006) Environmental mercury release, special education rates, and autism disorder: an ecological study of Texas. Health Place 12:203–209. doi:10.1016/j.healthplace.2004.11.005 CrossRefPubMedGoogle Scholar
  36. Palmer RF, Blanchard S, Wood R (2008) Proximity to point sources of environmental mercury release as a predictor of autism prevalence. Health Place 15(1):18–24CrossRefPubMedGoogle Scholar
  37. Rice DC (1989) Blood mercury concentrations following methyl mercury exposure in adult and infant monkeys. Environ Res 49:115–126. doi:10.1016/S0013-9351(89)80026-X CrossRefPubMedGoogle Scholar
  38. Rice DC, Krewski D, Collins BT, Willes RF (1989) Pharmacokinetics of methylmercury in the blood of monkeys (Macaca fascicularis). Fundam Appl Toxicol 12:23–33. doi:10.1016/0272-0590(89)90058-4 CrossRefPubMedGoogle Scholar
  39. Sallsten G, Barregard L, Schutz A (1993) Decrease in mercury concentration in blood after long term exposure: a kinetic study of chloralkali workers. Br J Ind Med 50:814–821PubMedGoogle Scholar
  40. Soldin OP, O’Mara DM, Aschner M (2008) Thyroid hormones and methylmercury toxicity. Biol Trace Elem Res 126(1–3):1–12CrossRefPubMedGoogle Scholar
  41. Thompson CM, Markesbery WR, Ehmann WD, Mao YX, Vance DE (1988) Regional brain trace-element studies in Alzheimer’s disease. Neurotoxicology 9:1–7PubMedGoogle Scholar
  42. Vahter M, Mottet NK, Friberg L, Lind B, Shen DD, Burbacher T (1994) Speciation of mercury in the primate blood and brain following long-term exposure to methyl mercury. Toxicol Appl Pharmacol 124:221–229. doi:10.1006/taap.1994.1026 CrossRefPubMedGoogle Scholar
  43. Vahter ME, Mottet NK, Friberg LT, Lind SB, Charleston JS, Burbacher TM (1995) Demethylation of methyl mercury in different brain sites of Macaca fascicularis monkeys during long-term subclinical methyl mercury exposure. Toxicol Appl Pharmacol 134:273–284. doi:10.1006/taap.1995.1193 CrossRefPubMedGoogle Scholar
  44. Webster JI, Tonelli L, Sternberg EM (2002) Neuroendocrine regulation of immunity. Annu Rev Immunol 20:125–163. doi:10.1146/annurev.immunol.20.082401.104914 CrossRefPubMedGoogle Scholar
  45. Windham GC, Zhang L, Gunier R, Croen LA, Grether JK (2006) Autism spectrum disorders in relation to distribution of hazardous air pollutants in the San Francisco bay area. Environ Health Perspect 114:1438–1444PubMedGoogle Scholar
  46. Yu WH, Lukiw WJ, Bergeron C, Niznik HB, Fraser PE (2001) Metallothionein III is reduced in Alzheimer’s disease. Brain Res 894:37–45. doi:10.1016/S0006-8993(00)03196-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Mental Retardation Research CenterDavid Geffen School of Medicine at UCLALos AngelesUSA

Personalised recommendations