BioMetals

, 22:1089 | Cite as

Effects of tellurite on growth of Saccharomyces cerevisiae

  • Domenica R. Massardo
  • Paola Pontieri
  • Loredana Maddaluno
  • Mario De Stefano
  • Pietro Alifano
  • Luigi Del Giudice
Article

Abstract

The effects of potassium tellurite on growth and survival of rho+ and rho0 Saccharomyces cerevisiae strains were investigated. Both rho+ and rho0 strains grew on a fermentable carbon source with up to 1.2 mM K2TeO3, while rho+ yeast cells grown on a non-fermentable carbon source were inhibited at tellurite levels as low as 50 μM suggesting that this metalloid specifically inhibited mitochondrial functions. Growth of rho+ yeast cells in the presence of increasing amount of tellurite resulted in dose-dependent blackening of the culture, a phenomenon not observed with rho0 cultures. Transmission electron microscopy of S. cerevisiae rho+ cells grown in the presence of tellurite showed that blackening was likely due to elemental tellurium (Te0) that formed large deposits along the cell wall and small precipitates in both the cytoplasm and mitochondria.

Keywords

Tellurite Saccharomyces cerevisiae Mitochondria Transmission electronic microscopy 

Notes

Acknowledgments

The research was supported by Compagnia di San Paolo special grant “iniziativa” to L. Del Giudice. P. Pontieri was supported by a postdoctoral grant from the Istituto Banco di Napoli, Fondazione.

References

  1. Baesman SM, Bullen TD, Dewald J, Zhang D, Curran S, Islam FS, Beveridge TJ, Oremland RS (2007) Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanion as respiratory electron acceptors. Appl Environ Microbiol 73:2135–2143. doi: 10.1128/AEM.02558-06 CrossRefPubMedGoogle Scholar
  2. Borghese R, Borsetti F, Foladori P, Ziglio G, Zannoni D (2004) Effects of the metalloid oxyanion tellurite (TeO3 2−) on growth characteristics of the phototrophic bacterium Rhodobacter capsulatus. Appl Environ Microbiol 70:6595–6602. doi: 10.1128/AEM.70.11.6595-6602.2004 CrossRefPubMedGoogle Scholar
  3. Borghese R, Marchetti D, Zannoni D (2008) The highly toxic oxyanion tellurite (TeO3 2−) enters the phototrophic bacterium Rhodobacter capsulatus via an as yet uncharacterized monocarboxylate transport system. Arch Microbiol 189:93–100. doi: 10.1007/s00203-007-0297-7 CrossRefPubMedGoogle Scholar
  4. Cooper WC (1971) Tellurium. Van Nostrand Renhod Co, New YorkGoogle Scholar
  5. Csotonyi JT, Stackebrandt E, Yurkov V (2006) Anaerobic respiration on tellurate and other metalloids in bacteria from hydrothermal vent fields in the eastern Pacific Ocean. Appl Environ Microbiol 72:4950–4956. doi: 10.1128/AEM.00223-06 CrossRefPubMedGoogle Scholar
  6. Del Giudice L, Massardo DR, Pontieri P, Wolf K (2005) Interaction between yeast mitochondrial and nuclear genomes: Null alleles of RTG genes affect resistance to the alkaloid lycorine in rho0 petites of Saccharomyces cerevisiae. Gene 354:9–14. doi: 10.1016/j.gene.2005.03.020 CrossRefPubMedGoogle Scholar
  7. Gharieb MM, Gadd GM (1998) Evidence for the involvement of vacuolar activity in metal (loid) tolerance: vacuolar-lacking and -defective mutants of Saccharomyces cerevisiae display higher sensitivity to chromate, tellurite and selenite. Biometals 11:101–106. doi: 10.1023/A:1009221810760 CrossRefPubMedGoogle Scholar
  8. Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425. doi: 10.1016/S0168-644(03)00044-5 CrossRefPubMedGoogle Scholar
  9. Ollivier PR, Bahrou AS, Marcus S, Cox T, Church TM, Hanson TE (2008) Volatilization and precipitation of tellurium by aerobic, tellurite-resistant marine microbes. Appl Environ Microbiol 74:7163–7173. doi: 101128/AEM.00733-08 CrossRefPubMedGoogle Scholar
  10. Taylor DE (1999) Bacterial tellurite resistance. Trends Microbiol 7:111–115. doi: 10.1016/S0966-842X(99)01454-7 CrossRefPubMedGoogle Scholar
  11. Taylor DE, Hou Y, Turner RJ, Weiner JH (1994) Location of a potassium tellurite resistance operon (tehAtehB) within the terminus of Escherichia coli K-12. J Bacteriol 176:2740–2742PubMedGoogle Scholar
  12. Toptchieva A, Sisson G, Bryden LJ, Taylor DE, Hoffman PS (2003) An inducible tellurite-resistance operon in Proteus mirabilis. Microbiology 149:1285–1295. doi: 10.1099/mic.0.25981-0 CrossRefPubMedGoogle Scholar
  13. Trutko SM, Akimenko VK, Suzina NE, Anisimova LA, Shlyapnikov MG, Baskunov BP, Duda VI, Boronin AM (2000) Involvement of the respiratory chain of gram-negative bacteria in the reduction of tellurite. Arch Microbiol 173:178–186. doi: 10.1007/S002039900123 CrossRefPubMedGoogle Scholar
  14. Turner RJ, Aharonowitz Y, Weiner JH, Taylor DE (2001) Glutathione is a target in bacterial tellurite toxicity and is protected by tellurite resistance determinants in Escherichia coli. Can J Microbiol 47:33–40CrossRefPubMedGoogle Scholar
  15. Zannoni D, Borsetti F, Harrison JJ, Turner RJ (2008) The bacterial response to the chalcogen metalloids Se and Te. Adv Microb Physiol 53:1–72. doi: 10.1016/S0065-2911(07)53001-8 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Domenica R. Massardo
    • 1
  • Paola Pontieri
    • 1
  • Loredana Maddaluno
    • 1
  • Mario De Stefano
    • 2
  • Pietro Alifano
    • 3
  • Luigi Del Giudice
    • 1
  1. 1.Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”Consiglio Nazionale delle RicercheNaplesItaly
  2. 2.Department of Environmental SciencesSecond University of NaplesCasertaItaly
  3. 3.Department of Biological and Environmental Sciences and TechnologyUniversity of SalentoLecceItaly

Personalised recommendations