Advertisement

BioMetals

, Volume 22, Issue 4, pp 649–658 | Cite as

Siderophore sorption to clays

  • Patricia A. MauriceEmail author
  • Elizabeth A. Haack
  • Bhoopesh Mishra
Article

Abstract

Siderophores are low molecular weight organic ligands exuded by some aerobic organisms and plants to acquire Fe under Fe-limited conditions. The hydroxamate siderophores may sorb to aluminosilicate clays through a variety of mechanisms depending upon the nature of the clay and of the siderophore along with solution conditions such as pH, ionic strength, and presence of metal cations. They may also affect metal binding to clays. Here, we review previous studies of siderophore sorption to aluminosilicate clays; briefly discuss how the techniques of X-ray diffractometry, Fourier-transform infrared spectroscopy, and X-ray absorption spectroscopy may be applied to such studies; review effects of siderophores on metal sorption to clays; and highlight some areas for future research.

Keywords

Siderophore Clay Sorption Metals XRD FTIR EXAFS 

Notes

Acknowledgments

The authors thank the NSF-funded (NSF-EAR02-21966) Environmental Molecular Science Institute at the University of Notre Dame and the Department of Energy, Office of Science (DOE-DE-FG02-02ER15323) for funding aspects of their siderophore-related research as reviewed in this chapter.

References

  1. Albrecht-Gary A-M, Crumbliss AL (1998) Coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release. In: Sigel A, Sigel H (eds) Metal ions in biological systems. Marcel Dekker, New York, pp 239–327Google Scholar
  2. Ams DA, Maurice PA, Hersman LE, Forsythe JH (2002) Siderophore production by P. mendocina in the presence of kaolinite: evidence for bacterial responses to Fe stress. Chem Geol 188:161–170. doi: 10.1016/S0009-2541(02)00077-3 CrossRefGoogle Scholar
  3. Dontsova KM, Norton LD, Johnston CT, Bigham JM (2004) Influence of exchangeable cations on water adsorption by soil clays. Soil Sci Soc Am J 68:1218–1227Google Scholar
  4. Duckworth OW, Sposito G (2005) Siderophore–manganese (III) interactions: II. Manganite dissolution promoted by desferrioxamine B. Environ Sci Technol 39:6045–6051. doi: 10.1021/es050276c PubMedCrossRefGoogle Scholar
  5. Duckworth OW, Bargar JR, Sposito G (2008) Sorption of ferric iron from ferrioxamine B to synthetic and biogenic layer type manganese oxides. Geochim Cosmochim Acta 72:3371–3380. doi: 10.1016/j.gca.2008.04.026 CrossRefGoogle Scholar
  6. Duckworth OW, Bargar JR, Sposito G (2009) Quantitative-structure activity relationships for aqueous metal–siderophore complexes. Environ Sci Technol 43(2):343–349. doi: 10.1021/es802044y PubMedCrossRefGoogle Scholar
  7. Edwards DC, Myneni SCB (2005) Hard and soft X-ray absorption spectroscopic investigation of aqueous Fe(III)–Hydroxamate siderophore complexes. J Phys Chem A 109:10249–10256PubMedCrossRefGoogle Scholar
  8. Edwards DC, Myneni SCB (2006) Near edge X-ray absorption fine structure spectroscopy of bacterial hydroxamate siderophores on aqueous solutions. J Phys Chem A 110:11809–11818. doi: 10.1021/jp0611976 PubMedCrossRefGoogle Scholar
  9. Evers A, Hancock RD, Martell AE, Motekaitis RJ (1989) Metal ion recognition in ligands with negatively charged oxygen donor groups. Complexation of Fe(III), Ga(III), In(III), Al(III), and other highly charged metal ions. Inorg Chem 29:2189–2195. doi: 10.1021/ic00310a035 CrossRefGoogle Scholar
  10. Farmer VC (1974) The layer silicates. In: Farmer VC (ed) The infrared spectra of minerals. Mineral Society, London, pp 331–359Google Scholar
  11. Haack EA, Johnston C, Maurice PA (2008) Siderophore sorption to montmorillonite. Geochim Cosmochim Acta 72:3381–3397. doi: 10.1016/j.gca.2008.03.027 CrossRefGoogle Scholar
  12. He HP, Frost RL, Bostrom T, Yuan P, Duong L, Yang D, Yunfel XF, Kloprogge JT (2006) Changes in the morphology of organoclays with HDTMA(+) surfactant loading. Appl Clay Sci 31:262–271. doi: 10.1016/j.clay.2005.10.011 CrossRefGoogle Scholar
  13. Hepinstall S, Turner B, Maurice PA (2005) Effects of siderophores on Cd and Pb adsorption to kaolinite. Clays Clay Miner 53:557–563. doi: 10.1346/CCMN.2005.0530601 CrossRefGoogle Scholar
  14. Holmén BA, Casey WH (1996) Hydroxamate ligands, surface chemistry, and the mechanism of ligand promoted dissolution of goethite [α-FeOOH(s)]. Geochim Cosmochim Acta 60:4403–4416. doi: 10.1016/S0016-7037(96)00278-5 CrossRefGoogle Scholar
  15. Johnston CT, De Oliveira MF, Teppen BJ, Sheng GY, Boyd SA (2001) Spectroscopic study of nitroaromatic-smectite sorption mechanisms. Environ Sci Technol 24:4767–4772. doi: 10.1021/es010909x CrossRefGoogle Scholar
  16. Johnston CT, Sheng G, Teppen BJ, Boyd SA, De Oliveira MF (2002) Spectroscopic study of dinitrophenol herbicide sorption on smectite. Environ Sci Technol 36:5067–5074. doi: 10.1021/es025760j PubMedCrossRefGoogle Scholar
  17. Karickhoff SW (1984) Organic pollutant adsorption in aqueous systems. J Hydraul Eng 110:707–735. doi: 10.1061/(ASCE)0733-9429(1984)110:6(707) CrossRefGoogle Scholar
  18. Kraemer SM (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66:3–18. doi: 10.1007/s00027-003-0690-5 CrossRefGoogle Scholar
  19. Kraemer SM, Cheah S-F, Zapf R, Xu J, Raymond KN, Sposito G (1999) Effect of hydroxamate siderophores on Fe release and Pb(II) adsorption by goethite. Geochim Cosmochim Acta 63:3003–3008. doi: 10.1016/S0016-7037(99)00227-6 CrossRefGoogle Scholar
  20. Lagaly G (1981) Characterization of clays by organic-compounds. Clay Miner 16:1–21. doi: 10.1180/claymin.1981.016.1.01 CrossRefGoogle Scholar
  21. Liermann LJ, Kalinowski BE, Brantley SL, Ferry JG (2000) Role of bacterial siderophores in dissolution of hornblende. Geochim Cosmochim Acta 64:587–602. doi: 10.1016/S0016-7037(99)00288-4 CrossRefGoogle Scholar
  22. Manecki M, Maurice PA (2008) Siderophore promoted dissolution of pyromorphite. Soil Sci 173:821–830. doi: 10.1097/SS.0b013e31818e8968 CrossRefGoogle Scholar
  23. Maurice PA (2009) Environmental surfaces and interfaces from the nanoscale to the global scale. Wiley, Hoboken, NJ, 494 ppGoogle Scholar
  24. Mishra B, Haack EA, Vasconcelos IF, Maurice PA, Bunker BA (2007) XAFS determination of Pb and Cd speciation with siderophores and the metal/siderophore/kaolinite system. AIP Proc 882:196–198. doi: 10.1063/1.2644472 CrossRefGoogle Scholar
  25. Mishra B, Haack EA, Maurice PA, Bunker BA (2009) Effects of the microbial siderophore DFO-B on Pb and Cd speciation in aqueous solution. Environ Sci Technol 43:94–100. doi: 10.1021/es071011w PubMedCrossRefGoogle Scholar
  26. Neilands JB, Konopka K, Schwyn B, Coy M, Francis RT, Paw BH, Bagg A (1987) Comparative biochemistry of microbial iron assimilation. In: Winkelmann G, Van der Helm D, Neilands JB (eds) Iron transport in microbes, plants and animals. VCH, Weinheim, pp 3–33Google Scholar
  27. Neubauer U, Nowack B, Furrer G, Schulin R (2000) Heavy metal sorption on clay minerals affected by the siderophore desferrioxamine B. Environ Sci Technol 34:2749–2755. doi: 10.1021/es990495w CrossRefGoogle Scholar
  28. Pereira TR, Laird DA, Thompson ML, Johnston CT, Teppen BJ, Li H, Boyd SA (2007) Role of smectite quasicrystal dynamics in adsorption of dinitrophenol. Soil Sci Soc Am J 72:347–354. doi: 10.2136/sssaj2007.0081 CrossRefGoogle Scholar
  29. Raymond KN, Dertz EA (2004) Biochemical and physical properties of siderophores. In: Cross JH, Mey AR, Payne SM (eds) Iron transport in bacteria. American Society of Microbiology Press, Washington DC, pp 3–17Google Scholar
  30. Rosenberg DR, Maurice PA (2003) Siderophore adsorption to and dissolution of kaolinite at pH 3–7 at 22°C. Geochim Cosmochim Acta 67:223–229. doi: 10.1016/S0016-7037(02)01082-7 CrossRefGoogle Scholar
  31. Sheng G, Johnston CT, Teppen BJ, Boyd SA (2002) Adsorption of dinitrophenol herbicides from water by montmorillonite. Clays Clay Miner 50:25–34. doi: 10.1346/000986002761002630 CrossRefGoogle Scholar
  32. Siebner-Freibach H, Hadar Y, Chen Y (2004) Interaction of iron chelating agents with clay minerals. Soil Sci Soc Am J 68:470–480CrossRefGoogle Scholar
  33. Siebner-Freibach H, Yariv S, Lapides Y, Hadar Y, Chen Y (2005) Thermo-FTIR spectroscopic study of the siderophore ferrioxamine B: spectral analysis and stereochemical implications of iron chelation, pH and temperature. J Agric Food Chem 53:3434–3443. doi: 10.1021/jf048359k PubMedCrossRefGoogle Scholar
  34. Sposito G (1984) The surface chemistry of soils. Oxford University Press, New York, p 234Google Scholar
  35. Sutheimer SH, Maurice PA, Zhou Q (1999) Dissolution of well and poorly crystallized kaolinites: Al speciation and effects of surface characteristics. Am Mineral 84:620–628Google Scholar
  36. Vantelon D, Pelletier M, Michot LJ, Barres O, Thomas F (2001) Fe, Mg and Al distribution in the octahedral sheet of montmorillonites. An infrared study in the OH-bending region. Clays Clay Miner 36:369–379Google Scholar
  37. Wolff-Boenisch D, Traina SJ (2007) The effect of desferrioxamine B on the desorption of U(VI) from Georgia kaolinite KGa-1b and its ligand-promoted dissolution at pH 6 and 25°C. Chem Geol 242:278–287. doi: 10.1016/j.chemgeo.2007.03.019 CrossRefGoogle Scholar
  38. Yariv S, Lapides I (2005) The use of thermo-XRD-analysis in the study of organo-smectite complexes: Robert Mackenzie memorial lecture. J Therm Anal Calorim 80:11–26. doi: 10.1007/s10973-005-0608-7 CrossRefGoogle Scholar

Copyright information

© U.S. Government 2009

Authors and Affiliations

  • Patricia A. Maurice
    • 1
    Email author
  • Elizabeth A. Haack
    • 1
  • Bhoopesh Mishra
    • 2
  1. 1.Department of Civil Engineering and Geological SciencesUniversity of Notre DameNotre DameUSA
  2. 2.Department of GeosciencesPrinceton UniversityPrincetonUSA

Personalised recommendations