, Volume 22, Issue 4, pp 565–571 | Cite as

Siderophores of Marinobacter aquaeolei: petrobactin and its sulfonated derivatives

  • Vanessa V. Homann
  • Katrina J. Edwards
  • Eric A. Webb
  • Alison ButlerEmail author


Siderophores are low molecular weight, high-affinity iron(III) ligands, produced by bacteria to solubilize and promote iron uptake under low iron conditions. Two prominent structural features characterize the majority of the marine siderophores discovered so far: (1) a predominance of suites of amphiphilic siderophores composed of an iron(III)-binding headgroup that is appended by one or two of a series of fatty acids and (2) a prevalence of siderophores that contain α-hydroxycarboxylic acid moieties (e.g., β-hydroxyaspartic acid or citric acid) which are photoreactive when coordinated to Fe(III). Variation of the fatty acid chain length affects the relative amphiphilicity within a suite of siderophores. Catecholate sulfonation is another structural variation that would affect the hydrophilicity of a siderophore. In addition to a review of the marine amphiphilic siderophores, we report the production of petrobactin disulfonate by Marinobacter aquaeolei VT8.


Marine siderophores Petrobactins Bacillibactins Sulfonated siderophores 



Support from the National Institutes of Health GM38130 is gratefully acknowledged.

Supplementary material

10534_2009_9237_MOESM1_ESM.doc (484 kb)
Supplementary material 1 (DOC 484 kb)


  1. Abergel RJ, Wilson MK, Arceneaux JEL, Hoette TM, Strong RK, Byers BR, Raymond KN (2006) Anthrax pathogen evades the mammalian immune system through stealth siderophore production. Proc Natl Acad Sci USA 103:18499–18503PubMedCrossRefGoogle Scholar
  2. Amin SA, Küpper FC, Green DH, Harris WR, Carrano CJ (2007) Boron binding by a siderophore isolated from marine bacteria associated with the toxic dinoflagellate G. catenatum. J Am Chem Soc 129:478–479PubMedCrossRefGoogle Scholar
  3. Antunes A, França L, Rainey FA, Huber R, Nobre MF, Edwards KJ, da Costa MS (2007) Marinobacter halosydne sp. nov., a novel species from the brine-seawater interface of the Shaban Deep, Red Sea. Int J Syst Evol Microbiol 57:1035–1040PubMedCrossRefGoogle Scholar
  4. Balzano S, Statham PJ, Lloyd JR, Pancost RD (2008) Role of microbial populations in the release of reduced iron to the water column from marine aggregates. Abstracts of the 12th international symposium on microbial ecology, Cairns, AustraliaGoogle Scholar
  5. Barbeau K, Rue EL, Bruland KW, Butler A (2001) Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Nature 413:409–413PubMedCrossRefGoogle Scholar
  6. Barbeau K, Zhang G, Live DH, Butler A (2002) Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J Am Chem Soc 124:378–379PubMedCrossRefGoogle Scholar
  7. Barbeau K, Rue EL, Trick CG, Bruland KW, Butler A (2003) The photochemical reactivity of siderophores produced by marine heterotrophic bacteria and cyanobacteria based on characteristic iron(III)-binding groups. Limnol Oceanogr 48:1069–1078Google Scholar
  8. Bentley RK, Holliman FG (1970) Pigments of Pseudomonas species. 3. Synthesis of demethylaeruginosin-B and aeruginosin-B. J Chem Soc C-Org 18:2447CrossRefGoogle Scholar
  9. Bergeron RJ, Huang G, Smith RE, Bharti N, McManis JS, Butler A (2003) Total synthesis and structure revision of petrobactin. Tetrahedron 59:2007–2014CrossRefGoogle Scholar
  10. Bister B, Bischoff D, Nicholson GJ, Valdebenito M, Schneider K, Winkelmann G, Hantke K, Süssmuth RD (2004) The structure of salmochelins: C-glucosylated enterobactins of Salmonella enterica. Biometals 17:471–481PubMedCrossRefGoogle Scholar
  11. Budzikiewicz H (2006) Bacterial aromatic sulfonates-a Bucherer reaction in nature? Mini-Rev Org Chem 3:93–97CrossRefGoogle Scholar
  12. Budzikiewicz H, Fuchs R, Taraz K, Marek-Kozuczuk M, Slorupska A (1998) Dihydropyoverdin-7-sulfonic acids—unusual bacterial metabolites. Nat Prod Lett 12:125–130Google Scholar
  13. Butler A (2005) Marine siderophores and microbial iron mobilization. Biometals 18:369–374PubMedCrossRefGoogle Scholar
  14. Haygood MG, Holt PD, Butler A (1993) Aerobactin production by a planktonic marine Vibrio sp. Limnol Oceanogr 38:1091–1097Google Scholar
  15. Herbert RB, Holliman FG (1969) Pigments of Pseudomonas species. 2. Structure of aeruginosin B. J Chem Soc C-Org 18:2517–2520CrossRefGoogle Scholar
  16. Hickford SJH, Küpper FC, Zhang G, Carrano CJ, Blunt JW, Butler A (2004) Petrobactin sulfonate, a new siderophore produced by the marine bacterium Marinobacter hydrocarbonoclasticus. J Nat Prod 67:1897–1899PubMedCrossRefGoogle Scholar
  17. Homann VV, Sandy M, Tincu A, Templeton A, Tebo B, Butler A (2009) Loihichelins A-F, a suite of amphiphilic siderophores produced by the marine bacterium halomonas LOB-5. J Nat Prod 72 (in press)Google Scholar
  18. Huu NB, Denner EBM, Ha DTC, Wanner G, Stan-Lotter H (1999) Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil producing well. Int J Syst Bacteriol 49:367–375PubMedCrossRefGoogle Scholar
  19. Ito Y, Butler A (2005) Structure of synechobactins, new siderophores of the marine cyanobacterium Synechococcus sp. PCC 7002. Limnol Oceanogr 50:1918–1923Google Scholar
  20. Kanoh K, Kamino K, Leleo G, Adachi K, Shizuri YJ (2003) Pseudoalterobactin A and B, new siderophores excreted by marine bacterium Pseudoalteromonas sp KP20–4. J Antibiot 56:871–875PubMedGoogle Scholar
  21. Kaye JZ, Marquez MC, Ventosa A, Baross JA (2004) Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 54:499–511PubMedCrossRefGoogle Scholar
  22. Koppisch AT, Browder CC, Moe AL, Shelley JT, Kinkel BA, Hersman LE, Iyer S, Ruggiero CE (2005) Petrobactin is the primary siderophore synthesized by Bacillus anthracis str. Sterne under conditions of iron starvation. Biometals 18:577–585PubMedCrossRefGoogle Scholar
  23. Küpper FC, Carrano CJ, Kuhn J-U, Butler A (2006) Photoreactivity of iron(III)-aerobactin: photoproduct structure and iron(III) coordination. Inorg Chem 45:6026–6033CrossRefGoogle Scholar
  24. Martin JD, Ito Y, Homann VV, Haygood MG, Butler A (2006) Structure and membrane affinity of new amphiphilic siderophores produced by Ochrobactrum sp. SP18. J Biol Inorg Chem 11:633–641PubMedCrossRefGoogle Scholar
  25. Martinez JS, Zhang GP, Holt PD, Jung H-T, Carrano CJ, Haygood MG, Butler A (2000) Self-assembling amphiphilic siderophores from marine bacteria. Science 287:1245–1247PubMedCrossRefGoogle Scholar
  26. Martinez JS, Carter-Franklin JN, Mann EL, Martin JD, Haygood MG, Butler A (2003) Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium. Proc Natl Acad Sci USA 100:3754–3759PubMedCrossRefGoogle Scholar
  27. Reid RT, Live DH, Faulkner DJ, Butler A (1993) A siderophore from a marine bacterium with an exceptional ferric ion affinity constant. Nature 366:455–458PubMedCrossRefGoogle Scholar
  28. Roepstorff P, Fohlmann J (1984) Proposal for a common nomenclature for sequence ions in mass-spectra of peptides. Biomed Mass Spectrom 11:601PubMedCrossRefGoogle Scholar
  29. Schwyn B, Neilands JB (1987) Universal chemical-assay for the detection and determination of siderophores. Anal Biochem 160:47–56PubMedCrossRefGoogle Scholar
  30. Strott CA (2002) Sulfonation and molecular action. Endocr Rev 23:703–732PubMedCrossRefGoogle Scholar
  31. Wilson MK, Abergel RJ, Raymond KN, Arceneaux JEL, Byers BR (2006) Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Biochem Biophys Res Comm 348:320–325PubMedCrossRefGoogle Scholar
  32. Xu G, Martinez JS, Groves JT, Butler A (2002) Membrane affinity of the amphiphilic marinobactin siderophores. J Am Chem Soc 124:13408–13415PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Vanessa V. Homann
    • 1
  • Katrina J. Edwards
    • 2
    • 3
  • Eric A. Webb
    • 2
    • 3
  • Alison Butler
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of Biological Sciences, Marine Environmental Biology SectionUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations