Advertisement

BioMetals

, Volume 22, Issue 4, pp 679–689 | Cite as

The redox hypothesis in siderophore-mediated iron uptake

  • James M. Harrington
  • Alvin L. CrumblissEmail author
Article

Abstract

The viability of iron(III/II) reduction as the initial step in the in vivo release of iron from its thermodynamically stable siderophore complex is explored.

Keywords

Iron bioavailability Iron transport Redox potentials Redox kinetics 

Notes

Acknowledgments

We thank the National Science Foundation (CHE 0809466) for their support of our work in this area.

References

  1. Albrecht-Gary AM, Crumbliss AL (1998) Coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release. In: Sigel A, Sigel H (eds) Metal ions in biological systems. M. Dekker, New YorkGoogle Scholar
  2. Barchini E, Cowart RE (1996) Extracellular iron reductase activity produced by Listeria monocytogenes. Arch Microbiol 166:51–57. doi: 10.1007/s002030050354 PubMedCrossRefGoogle Scholar
  3. Berczi A, Su D, Asard H (2007) An Arabidopsis cytochrome b561 with trans-membrane ferrireductase capability. FEBS Lett 581:1505–1508. doi: 10.1016/j.febslet.2007.03.006 PubMedCrossRefGoogle Scholar
  4. Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15:325–339. doi: 10.1023/A:1020218608266 PubMedCrossRefGoogle Scholar
  5. Bradić Z, Wilkins RG (1984) Comparative behavior in the kinetics of reduction by superoxide and dithionite ions. J Am Chem Soc 106:2236–2239. doi: 10.1021/ja00320a002 CrossRefGoogle Scholar
  6. Carrano CJ, Cooper SR, Raymond KN (1979) Coordination chemistry of microbial iron transport compounds 11. Solution equilibrium and electrochemistry of ferric rhodotorulate complexes. J Am Chem Soc 101:599. doi: 10.1021/ja00497a019 CrossRefGoogle Scholar
  7. Carrano CJ, Dreschel H, Kaiser D, Jung G, Matzanke B, Winkelmann G, Rochel N, Albrecht-Gary AM (1996) Coordination chemistry of the carboxylate type siderophore rhizoferrin: the iron(III) complex and its metal analogs. Inorg Chem 35:6429–6436. doi: 10.1021/ic960526d PubMedCrossRefGoogle Scholar
  8. Chatfield CH, Cianciotto NP (2007) The secreted pyomelanin pigment of Legionella pneumophila confers ferric reductase activity. Infect Immun 75:4062–4070. doi: 10.1128/IAI.00489-07 PubMedCrossRefGoogle Scholar
  9. Chiu HJ, Johnson E, Schroder I, Rees DC (2001) Crystal structures of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus and its complex with NADP+. Structure 9:311–319. doi: 10.1016/S0969-2126(01)00589-5 PubMedCrossRefGoogle Scholar
  10. Cobessi D, Celia H, Pattus F (2005) Crystal structure at high resolution of ferric-pyochelin and its membrane receptor FptA from Pseudomonas aeruginosa. J Mol Biol 352:893–904. doi: 10.1016/j.jmb.2005.08.004 PubMedCrossRefGoogle Scholar
  11. Cooper SR, McArdle JV, Raymond KN (1978) Siderophore electrochemistry: relation to intracellular iron release mechanism. Proc Natl Acad Sci USA 75:3551–3554. doi: 10.1073/pnas.75.8.3551 PubMedCrossRefGoogle Scholar
  12. Cowart RE (2002) Reduction of iron by extracellular iron reductases: implications for microbial iron acquisition. Arch Biochem Biophys 400:273–281. doi: 10.1016/S0003-9861(02)00012-7 PubMedCrossRefGoogle Scholar
  13. Cox CD (1980) Iron reductases from Pseudomonas aeruginosa. J Bacteriol 141:199–204PubMedGoogle Scholar
  14. Crichton R (2001) Inorganic biochemistry of iron metabolism: from molecular mechanisms to clinical consequences. Wiley, ChichesterGoogle Scholar
  15. Crumbliss AL (1991) Aqueous solution equilibrium and kinetic studies of iron siderophore and model siderophore complexes. In: Winkelmann G (ed) Handbook of microbial iron chelates. CRC Press, Boca RatonGoogle Scholar
  16. Crumbliss AL, Harrington JM (2008) Iron sequestration by small molecules: thermodynamic and kinetic studies of natural siderophores and synthetic model compounds. Adv Inorg Chem 61 (in press)Google Scholar
  17. Dhungana S, Crumbliss AL (2005) Coordination chemistry and redox processes in siderophore-mediated iron transport. Geomicrobiology 22:87–98CrossRefGoogle Scholar
  18. Dhungana S, Miller MJ, Dong L, Ratledge C, Crumbliss AL (2003) Iron chelation properties of an extracellular siderophore exochelin MN. J Am Chem Soc 125:7654–7663. doi: 10.1021/ja029578u PubMedCrossRefGoogle Scholar
  19. Dhungana S, Anthony CRIII, Hersman LE (2007) Ferrihydrite dissolution by pyridine-2, 6-bis(monothiocarboxylic acid) and hydrolysis products. Geochim Cosmochim Acta 71:5651–5660. doi: 10.1016/j.gca.2007.07.022 CrossRefGoogle Scholar
  20. Dodgen HW, Liu G, Hunt JP (1981) Water exchange with ferric ion and oligomerized iron in acidic aqueous solutions. Inorg Chem 20:1002–1005. doi: 10.1021/ic50218a011 CrossRefGoogle Scholar
  21. Grant M, Jordan RB (1981) Kinetics of solvent water exchange on iron(III). Inorg Chem 20:55–60. doi: 10.1021/ic50215a014 CrossRefGoogle Scholar
  22. Greenwood KT, Luke RKJ (1978) Enzymatic hydrolysis of enterochelin and its iron complex in Escherichia coli K-12. Properties of enterochelin esterase. Biochim Biophys Acta 525:209–218PubMedGoogle Scholar
  23. Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc Royal Soc Lond Ser A 147:332–351CrossRefGoogle Scholar
  24. Halle F, Meyer JM (1992) Ferrisiderophore reductases of Pseudomonas : purification, properties and cellular location of the Pseudomonas aeruginosa ferripyoverdine reductase. Eur J Biochem 209:613–620. doi: 10.1111/j.1432-1033.1992.tb17327.x PubMedCrossRefGoogle Scholar
  25. Henderson RA (1994) The mechanisms of reactions at transition metal sites. Oxford University Press, OxfordGoogle Scholar
  26. Inman RS, Coughlan MM, Wessling-Resnick M (1994) Extracellular ferrireductase activity of K562 cells is coupled to transferrin-independent iron transport. Biochemistry 33:11850–11857. doi: 10.1021/bi00205a022 PubMedCrossRefGoogle Scholar
  27. Kaufmann F, Lovley DR (2001) Isolation and characterization of a soluble NADPH-dependent Fe(III) reductase from Geobacter sulfurreducens. J Bacteriol 183:4468–4476. doi: 10.1128/JB.183.15.4468-4476.2001 PubMedCrossRefGoogle Scholar
  28. Kazmi SA, Shorter AL, McArdle JV (1982) Kinetics of reduction of ferrioxamine B by chromium(II), vanadium(II), and dithionite. J Inorg Biochem 17:269–281. doi: 10.1016/S0162-0134(00)80088-4 CrossRefGoogle Scholar
  29. Kazmi SA, Shorter AL, McArdle JV (1984) Kinetics of reduction of ferrichrome and ferrichrome A by chromium(II), europium(II), vanadium(II), and dithionite. Inorg Chem 23:4331–4332. doi: 10.1021/ic00193a045 CrossRefGoogle Scholar
  30. Kazmi SA, Shorter AL, McArdle JV (1986) Mechanisms of iron release from microbial iron transport compounds. In: Atta-ur-Rahman Le, Quesne PW (eds) New trends in natural products chemistry. Elsevier Science Publishers, AmsterdamGoogle Scholar
  31. Klumpp C, Burger A, Mislin ML, Abdallah MA (2005) From a total synthesis of cepabactin and its 3:1 ferric complex to the isolation of a 1:1:1 mixed complex between iron (III), cepabactin and pyochelin. Bioorg Med Chem Lett 15:1721–1724. doi: 10.1016/j.bmcl.2005.01.034 PubMedCrossRefGoogle Scholar
  32. Kremer SM, Wood PM (1992) Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(III) reductase: kinetic comparison with neutorphil NADPH oxidase and yeast flavocytochrome b2. Eur J Biochem 205:133–138. doi: 10.1111/j.1432-1033.1992.tb16760.x PubMedCrossRefGoogle Scholar
  33. Lambeth DO, Palmer G (1973) The Kinetics and mechanism of reduction of electron transfer proteins and other compounds of biological interest by dithionite. J Biol Chem 248:6095–6103PubMedGoogle Scholar
  34. Le Faou AE, Morse SA (1991) Characterization of a soluble ferric reductase from Neisseria gonorrhoeae. Biol Met 4:126–131. doi: 10.1007/BF01135390 PubMedCrossRefGoogle Scholar
  35. Lee CW, Ecker DJ, Raymond KN (1985) Coordination chemistry of microbial iron transport compounds. 34. The pH-dependent reduction of ferric enterobactin probed by electrochemical methods and its implications for microbial iron transport. J Am Chem Soc 107:6920–6923. doi: 10.1021/ja00310a030 CrossRefGoogle Scholar
  36. Lee PL, Halloran C, Cross AR, Beutler E (2000) NADH-ferric reductase activity associated with dihydropteridine reductase. Biochem Biophys Res Commun 271:788–795. doi: 10.1006/bbrc.2000.2708 PubMedCrossRefGoogle Scholar
  37. Liger D, Graille M, Zhou CZ, Leulliot N, Quevillon-Cheruel S, Blondeau K, Janin J, van Tilbeurgh H (2004) Crystal structure and functional characterization of yeast YLR011wp, an enzyme with NAD(P)H-FMN and ferric iron reductase activities. J Biol Chem 279:34890–34897. doi: 10.1074/jbc.M405404200 PubMedCrossRefGoogle Scholar
  38. Martell AE, Smith RM (1989) Critical stability constants. Plenum, New YorkGoogle Scholar
  39. Matzanke BF, Anemuller S, Schunemann V, Trautwein AX, Hantke K (2004) FhuF, part of a siderophore-reductase system. Biochemistry 43:1386–1392PubMedCrossRefGoogle Scholar
  40. Mazoch J, Tesarik R, Sedlacek V, Kucera I, Turanek J (2004) Isolation and biochemical characterization of two soluble iron(III) reductases from Paracoccus denitrificans. Eur J Biochem 271:553–562. doi: 10.1046/j.1432-1033.2003.03957.x PubMedCrossRefGoogle Scholar
  41. McKie AT, Latunde-Dada GO, Miret S, McGregor JA, Anderson GJ, Vulpe CD, Wrigglesworth JM, Simpson RJ (2002) Molecular evidence for the role of a ferric reductase in iron transport. Biochem Soc Trans 30:722–724. doi: 10.1042/BST0300722 PubMedCrossRefGoogle Scholar
  42. Mies KA, Wirgau JI, Crumbliss AL (2006) Ternary complex formation facilitates a redox mechanism for iron release from a siderophore. Biometals 19:115–126. doi: 10.1007/s10534-005-4342-1 PubMedCrossRefGoogle Scholar
  43. Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451. doi: 10.1128/MMBR.00012-07 PubMedCrossRefGoogle Scholar
  44. Moller C, van Heerden E (2006) Isolation of a soluble and membrane-associated Fe(III) reductase from the thermophile, Thermus scotoductus. FEMS Microbiol Lett 265:237–243. doi: 10.1111/j.1574-6968.2006.00499.x PubMedCrossRefGoogle Scholar
  45. Moody MA, Dailey HA (1985) Ferric iron reductase of Rhodopseudomonas sphaeroides. J Bacteriol 163:1120–1125PubMedGoogle Scholar
  46. Moore RE, Kim Y, Philpott CC (2003) The mechanism of ferrichrome transport through Arn1p and its metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 100:5664–5669. doi: 10.1073/pnas.1030323100 PubMedCrossRefGoogle Scholar
  47. Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, Sharp JJ, Fujiwara Y, Barker JE, Fleming MD (2005) Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet 37:1264–1269. doi: 10.1038/ng1658 PubMedCrossRefGoogle Scholar
  48. Poch MT, Johnson W (1993) Ferric reductases of Legionella pneumophila. Biometals 6:107–114. doi: 10.1007/BF00140111 PubMedCrossRefGoogle Scholar
  49. Raymond KN, Dertz EA (2004) Biochemical and physical properties of siderophores. In: Crosa JH, Rey AR, Payne SM (eds) Iron transport in bacteria. ASM Press, Washington, DC, pp 3–17Google Scholar
  50. Raymond KN, Dertz EA, Kim SS (2003) Bioinorganic chemistry special feature: enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci USA 100:3584–3588. doi: 10.1073/pnas.0630018100 PubMedCrossRefGoogle Scholar
  51. Redinbaugh MG, Campbell WH (1983) Reduction of ferric citrate catalyzed by NADH:nitrate reductase. Biochem Biophys Res Commun 114:1182–1188. doi: 10.1016/0006-291X(83)90687-3 PubMedCrossRefGoogle Scholar
  52. Richens DT (2005) Ligand substitution reactions at inorganic centers. Chem Rev 105:1961–2002. doi: 10.1021/cr030705u PubMedCrossRefGoogle Scholar
  53. Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–698. doi: 10.1038/17800 PubMedCrossRefGoogle Scholar
  54. Roman DG, Dancis A, Anderson GJ, Klausner RD (1993) The fission yeast ferric reductase gene frp1+ is required for ferric iron uptake and encodes a protein that is homologous to the gp91-phox subunit of the human NADPH phagocyte oxidoreductase. Mol Cell Biol 13:4342–4350PubMedGoogle Scholar
  55. Schmidt W (2003) Iron solutions: acquisition strategies and signaling pathways in plants. Trends Plant Sci 8:188. doi: 10.1016/S1360-1385(03)00048-7 PubMedCrossRefGoogle Scholar
  56. Sparla F, Preger V, Pupillo P, Trost P (1999) Characterization of a novel NADH-specific, FAD-containing, soluble reductase with ferric citrate reductase activity from maize seedlings. Arch Biochem Biophys 363:301–308. doi: 10.1006/abbi.1998.1085 PubMedCrossRefGoogle Scholar
  57. Spasojević I, Armstrong SK, Brickman TJ, Crumbliss AL (1999) Electrochemical behavior of the Fe(III) complexes of the cyclic hydroxamate siderophores alcaligin and desferrioxamine E. Inorg Chem 38:449–454. doi: 10.1021/ic980635n PubMedCrossRefGoogle Scholar
  58. Swaddle TW, Merbach AE (1981) High-pressure oxygen-17 Fourier transform nuclear magnetic resonance spectroscopy. Mechanism of water exchange on iron(III) in acidic aqueous solution. Inorg Chem 20:4212–4216CrossRefGoogle Scholar
  59. Takeda K, Iizuka M, Watanabe T, Nakagawa J, Kawasaki S, Niimura Y (2007) Synechocystis DrgA protein functioning as nitroreductase and ferric reductase is capable of catalyzing the Fenton reaction. FEBS J 274:1318–1327. doi: 10.1111/j.1742-4658.2007.05680.x PubMedCrossRefGoogle Scholar
  60. Timmerman MM, Woods JP (2001) Potential role for extracellular glutathione-dependent ferric reductase in utilization of environmental and host ferric compounds by Histoplasma capsulatum. Infect Immun 69:7671–7678. doi: 10.1128/IAI.69.12.7671-7678.2001 PubMedCrossRefGoogle Scholar
  61. Umbreit JN, Conrad ME, Moore EG, Desai MP, Turrens J (1996) Paraferritin: a protein complex with ferrireductase activity is associated with iron absorption in rats. Biochemistry 35:6460–6469. doi: 10.1021/bi951927s PubMedCrossRefGoogle Scholar
  62. Vadas A, Monbouquette HG, Johnson E, Schroder I (1999) Identification and characterization of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus. J Biol Chem 274:36715–36721. doi: 10.1074/jbc.274.51.36715 PubMedCrossRefGoogle Scholar
  63. Vargas JD, Herpers B, McKie AT, Gledhill S, McDonnell J (2003) Stromal cell-derived receptor 2 and cytochrome b561 are functional ferric reductases. Biochim Biophys Acta 1651:116–123PubMedGoogle Scholar
  64. Vartivarian SE, Cowart RE (1999) Extracellular iron reductases: identification of a new class of enzymes by siderophore-producing microorganisms. Arch Biochem Biophys 364:75–82. doi: 10.1006/abbi.1999.1109 PubMedCrossRefGoogle Scholar
  65. Waters BM, Blevins DG, Eide DJ (2002) Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Plant Physiol 129:85–94. doi: 10.1104/pp.010829 PubMedCrossRefGoogle Scholar
  66. Waters BM, Lucena C, Romera FJ, Jester GG, Wynn AN, Rojas CL, Alcantara E, Perez-Vincente R (2007) Ethylene involvement in the regulation of the H+-ATPase CsHA1 gene and of the new isolated ferric reductase CsFRO1 and iron transporter CsIRT1 genes in cucumber plants. Plant Physiol Biochem 45:293–301. doi: 10.1016/j.plaphy.2007.03.011 PubMedCrossRefGoogle Scholar
  67. Wawrousek EF, McArdle JV (1982) Spectroelectrochemistry of ferrioxamine B, ferrichrome, and ferrichrome A. J Inorg Biochem 17:169–183. doi: 10.1016/S0162-0134(00)80097-5 CrossRefGoogle Scholar
  68. Weber G, von Wiren N, Hayen H (2008) Investigation of ascorbate-mediated iron release from ferric phytosiderophores in the presence of nicotianamine. Biometals 21:503–513. doi: 10.1007/s10534-008-9137-8 PubMedCrossRefGoogle Scholar
  69. Wilkins RG (1991) Kinetics and mechanism of reactions of transition metal complexes. VCH, WeinhamCrossRefGoogle Scholar
  70. Winkelmann G (1991) Handbook of microbial iron chelates. CRC Press, Boca RatonGoogle Scholar
  71. Wirgau JI, Spasojević I, Boukhalfa H, Batinić-Haberle I, Crumbliss AL (2002) Thermodynamics, kinetics, and mechanism of the stepwise dissociation and formation of tris(l-lysinehydroxamato)iron(III) in aqueous acid. Inorg Chem 41:1464. doi: 10.1021/ic0109795 PubMedCrossRefGoogle Scholar
  72. Xia M, Wei J, Lei Y, Ying L (2007) A novel ferric reductase purified from Magnetospirillum gryphiswaldense MSR-1. Curr Microbiol 55:71–75. doi: 10.1007/s00284-007-0023-3 PubMedCrossRefGoogle Scholar
  73. Yi Y, Guerinot ML (1996) Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J 10:835–844. doi: 10.1046/j.1365-313X.1996.10050835.x PubMedCrossRefGoogle Scholar
  74. Yun CW, Bauler M, Moore RE, Klebbas PE, Philpott CC (2001) The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae. J Biol Chem 276:10218–10223. doi: 10.1074/jbc.M010065200 PubMedCrossRefGoogle Scholar
  75. Zamowski R, Woods JP (2005) Glutathione-dependent extracellular ferric reductase activities in dimorphic zoopathogenic fungi. Microbiology 151:2233–2240. doi: 10.1099/mic.0.27918-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Department of ChemistryDuke UniversityDurhamUSA

Personalised recommendations