Advertisement

BioMetals

, Volume 22, Issue 6, pp 863–875 | Cite as

Elemental fingerprinting of tumorous and adjacent non-tumorous tissues from patients with colorectal cancer using ICP-MS, ICP-OES and chemometric analysis

  • Isela Lavilla
  • Marta Costas
  • Pilar San Miguel
  • Jorge Millos
  • Carlos Bendicho
Article

Abstract

Tumorous and adjacent non-tumorous paired biopsies from 38 patients with colorectal cancer were analyzed by inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry after low-volume microwave digestion. 18 elements were investigated: Ag, Al, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Ni, P, Pb, S, Se and Zn. Different chemometric tools were used for data evaluation: Wilcoxon signed rank test, Hieratical clustering analysis, principal component analysis (PCA) and linear discriminant analysis (LDA). With the exception of Al, tumours were observed to have significantly more elevated concentrations of essential elements as compared to non-tumours. On the contrary, elements considered potentially carcinogenic such as Cr, Ni, Mo or Co do not display significant differences. When PCA was applied, different components were obtained for tumorous and non-tumorous tissues. When LDA was applied for the elements studied (including essential and non-essential elements) about 90% of cases were correctly classified.

Keywords

Colorectal cancer Trace and minor elements ICP-MS ICP-OES Chemometric analysis 

Notes

Acknowledgments

Financial support from the Spanish Education and Science Ministry (project CTQ2006-04111/BQU) is gratefully acknowledged.

References

  1. Alimonti A, Bocca B, Lamazza A et al (2008) A study on metals content in patients with colorectal polyps. J Toxicol Environ Health 71:342–347. doi: 10.1080/15287390701839133 CrossRefGoogle Scholar
  2. Al-Taie OH, Uceyler N, Eubner U et al (2004) Expression profiling and genetic alterations of the selenoproteins GI-GPx and SePP in colorectal carcinogenesis. Nutr Cancer 48:6–14. doi: 10.1207/s15327914nc4801_2 CrossRefPubMedGoogle Scholar
  3. Andrasi E, Orosz L, Scheibeler H et al (1995) Concentrations of elements in brain tumors. Mikrochim Acta 118:113–121. doi: 10.1007/BF01242234 Google Scholar
  4. Aung CS, Kruger WA, Poronnik P et al (2007) Plasma membrane Ca2+-ATPase expression during colon cancer cell line differentiation. Biochem Biophys Res Commun 355:932–936. doi: 10.1016/j.bbrc.2007.02.050 CrossRefPubMedGoogle Scholar
  5. Bandura DR, Ornatsky OI, Liao L (2004) Characterization of phosphorus content of biological samples by ICP-DRC-MS: potential tool for cancer research. J Anal At Spectrom 19:96–100. doi: 10.1039/b308901k CrossRefGoogle Scholar
  6. Behrend L, Mohr A, Dick T et al (2005) Manganese superoxide dismutase induces p53-dependent senescence in colorectal cancer cells. Mol Cell Biol 25:7758–7769. doi: 10.1128/MCB.25.17.7758-7769.2005 CrossRefPubMedGoogle Scholar
  7. Bocca B, Lamazza A, Pino A et al (2007) Determination of 30 elements in colorectal biopsies by sector field inductively coupled plasma mass spectrometry. Rapid Commun Mass Spectrom 21:1776–1782. doi: 10.1002/rcm.3016 CrossRefPubMedGoogle Scholar
  8. Brookes MJ, Hughes S, Turner FE et al (2006) Modulation of iron transport proteins in human colorectal carcinogenesis. Gut 55:1449–1460. doi: 10.1136/gut.2006.094060 CrossRefPubMedGoogle Scholar
  9. Chung FY, Lin SR, Lu CY et al (2006) Sarco/endoplasmic reticulum calcium-ATPase 2 expression as a tumor marker in colorectal cancer. Am Surg Pathol 30:969–974. doi: 10.1097/00000478-200608000-00006 CrossRefGoogle Scholar
  10. Dai Q, Shrubsole MJ, Ness RM et al (2007) The relation of magnesium and calcium intakes and a genetic polymorphism in the magnesium transporter to colorectal neoplasia risk. Am J Clin Nutr 86:743–751PubMedGoogle Scholar
  11. Darbre PD (2005) Aluminum, antiperspirants and breast cancer. J Inorg Biochem 99:1912–1919. doi: 10.1016/j.jinorgbio.2005.06.001 CrossRefPubMedGoogle Scholar
  12. Drake EN II, Sky-Peck HH (1989) Discriminant analysis of trace element distribution in normal and malignant human tissues. Cancer Res 49:4210–4215PubMedGoogle Scholar
  13. Ebrahim AM, Eltayeb MAH, Shaat MK et al (2007) Study of selected trace elements in cancerous and non-cancerous human breast tissues from Sudanese subjects using instrumental neutron activation analysis. Sci Total Environ 383:52–58. doi: 10.1016/j.scitotenv.2007.04.047 CrossRefPubMedGoogle Scholar
  14. Eisenstein RS (2000) Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu Rev Nutr 20:627–662. doi: 10.1146/annurev.nutr.20.1.627 CrossRefPubMedGoogle Scholar
  15. Exley C, Charles LM, Barr L et al (2007) Aluminum in human breast tissue. J Inorg Biochem 101:1344–1346. doi: 10.1016/j.jinorgbio.2007.06.005 CrossRefPubMedGoogle Scholar
  16. Feustel A, Wennrich R, Dittrich M (1986) Studies of Cd, Zn and Cu levels in human kidney tumours and normal kidney. Urol Res 14:105–108. doi: 10.1007/BF00257895 CrossRefPubMedGoogle Scholar
  17. Folsom AR, Hong CP (2006) Magnesium intake and reduced risk of colon cancer in a prospective study of women. Am J Epidemiol 163:232–235. doi: 10.1093/aje/kwj037 CrossRefPubMedGoogle Scholar
  18. González MA, Álvarez del Luján M, Pisani GB et al (2007) Involvement of oxidative stress in the impairment in biliary secretory function induced by intraperitoneal administration of aluminum to rats. Biol Trace Elem Res 116:329–348. doi: 10.1007/BF02698017 CrossRefPubMedGoogle Scholar
  19. Goodman VL, Brewer GJ, Merajver SD (2004) Copper deficiency as an anti-cancer strategy. Endocr Relat Cancer 11:255–263. doi: 10.1677/erc.0.0110255 CrossRefPubMedGoogle Scholar
  20. Gregoriadis GC, Apostolidis NS, Romanos AN et al (1983) A comparative study of trace elements in normal and cancerous colorectal tissues. Cancer 52:508–519. doi: 10.1002/1097-0142(19830801)52:3<508::AID-CNCR2820520322>3.0.CO;2-8 CrossRefPubMedGoogle Scholar
  21. Gupta SK, Singh SP, Shukla VK (2005) Copper, zinc and Cu/Zn ratio in carcinoma of the gallbladder. J Surg Oncol 91:204–208. doi: 10.1002/jso.20306 CrossRefPubMedGoogle Scholar
  22. Gupte A, Mumper RJ (2009) Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev 35:32–46. doi: 10.1016/j.ctrv.2008.07.004 CrossRefPubMedGoogle Scholar
  23. Gurusamy KS, Farquharson MJ, Craig C et al (2008) An evaluation study of trace element content in colorectal liver metastases and surrounding normal livers by X-ray fluorescence. Biometals 21:373–378. doi: 10.1007/s10534-007-9126-3 CrossRefPubMedGoogle Scholar
  24. Halliwell B, Gutteridge J (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  25. Hartwig A (2000) Recent advances in metal carcinogenicity. Pure Appl Chem 72:1007–1014. doi: 10.1351/pac200072061007 CrossRefGoogle Scholar
  26. International Agency for Research on Cancer (1993) IARC monographs on the evaluation of the carcinogenic risk to man: beryllium, cadmium, mercury and exposures in the glass manufacturing industry. IARC, LyonGoogle Scholar
  27. Ionescu JC, Novotny J, Stejskal V et al (2006) Increased levels of transition metals in breast cancer tissue. Neuroendicronol Lett 27:36–39Google Scholar
  28. Jacobs ET, Jiang R, Alberts DS et al (2004) Selenium and colorectal adenoma: results of a pooled analysis. J Natl Cancer Inst 96:1669–1675PubMedCrossRefGoogle Scholar
  29. Jaiswal AS, Narayan S (2004) Zinc stabilizes adenomatous polyposis coli (APC) protein levels and induces cell cycle in colon cancer cells. J Cell Biochem 93:345–357. doi: 10.1002/jcb.20156 CrossRefPubMedGoogle Scholar
  30. Janssen AML, Bosman CB, Kruidenier L et al (1999) Superoxide dismutases in the human colorectal cancer sequence. J Cancer Res Clin Oncol 125:327–335. doi: 10.1007/s004320050282 CrossRefPubMedGoogle Scholar
  31. Kasprzak KS (1997) Effects of calcium, magnesium, zinc and iron on nickel carcinogenesis: inhibition versus enhancement. In: Hadjiliadis ND (ed) Cytotoxic, mutagenic and carcinogenic potential of heavy metals related to human environment, vol 26. Kluwer Academic Publishers, Dordrecht, pp 93–106Google Scholar
  32. Kawabata H, Germain RS, Vuong PT et al (2000) Transferrin receptor 2-alpha supports cell growth both in iron-chelated cultured cells and in vivo. J Biol Chem 275:16618–16625. doi: 10.1074/jbc.M908846199 CrossRefPubMedGoogle Scholar
  33. Knekt P, Reunamen A, Takkunen H et al (1994) Body iron stores and risk of cancer. Int J Cancer 56:379–382. doi: 10.1002/ijc.2910560315 CrossRefPubMedGoogle Scholar
  34. Kuo CY, Wong RH, Lin JY et al (2006) Accumulation of chromium and nickel metals in lung tumors from lung cancer patients in Taiwan. J Toxicol Environ Health 69:1337–1344. doi: 10.1080/15287390500360398 CrossRefGoogle Scholar
  35. Lapidos KA, Woodhouse EC, Kohn EC et al (2001) Mg++-induced endothelial cell migration: substratum selectivity and receptor-involvement. Angiogenesis 8:21–28. doi: 10.1023/A:1016619414817 CrossRefGoogle Scholar
  36. Larrick JW, Cresswell P (1979) Modulation of cell surface iron transferring receptors by cellular density and state activation. J Supramol Struct 11:579–586. doi: 10.1002/jss.400110415 CrossRefPubMedGoogle Scholar
  37. Larsson SC, Bergkvist L, Wolk A (2005) Magnesium intake in relation to risk of colorectal cancer in women. J Am Med Assoc 293:86–89. doi: 10.1001/jama.293.1.86 CrossRefGoogle Scholar
  38. Leonard SS, Harris GK, Shi XL (2004) Metal-induced oxidative stress and signal transduction. Free Radic Biol Med 37:1921–1942. doi: 10.1016/j.freeradbiomed.2004.09.010 CrossRefPubMedGoogle Scholar
  39. Lowndes SA, Harris AL (2005) The role of copper in tumour angiogenesis. J Mammary Gland Biol Neoplasia 10:299–310. doi: 10.1007/s10911-006-9003-7 CrossRefPubMedGoogle Scholar
  40. Mai FD, Chen BJ, Wu LC et al (2006) Imaging of single liver tumor cells intoxicated by heavy metals using ToF-SIMS. Appl Surf Sci 252:6809–6812. doi: 10.1016/j.apsusc.2006.02.227 CrossRefGoogle Scholar
  41. Maier JAM, Nasulewicz-Goldeman A, Simonacci M et al (2007) Insights into the mechanisms involved in magnesium-dependent inhibition of primary tumor growth. Nutr Cancer 59:192–198PubMedGoogle Scholar
  42. Majewska U, Banas D, Braziewicz J et al (2007) Trace element concentration distributions in breast, lung and colon tissues. Phys Med Biol 52:3895–3911. doi: 10.1088/0031-9155/52/13/016 CrossRefPubMedGoogle Scholar
  43. Martin Mateo MC, Rabadan J, Boustamante J (1990) Comparative analysis of certain metals and tumor markers in bronchopulmonary cancer and colorectal cancers. Metals and tumor markers in the neoplastic process. Clin Physiol Biochem 8:261–266PubMedGoogle Scholar
  44. Mates JM, Pérez-Gómez C, Nunez de Castro I (1999) Antioxidants enzymes and human diseases. Clin Biochem 32:595–603. doi: 10.1016/S0009-9120(99)00075-2 CrossRefPubMedGoogle Scholar
  45. Millos J, Costas-Rodríguez M, Lavilla I et al (2008) Multielemental determination in breast cancerous and non-cancerous biopsies by inductively coupled plasma-mass spectrometry following small volume microwave-assisted digestion. Anal Chim Acta 622:77–84. doi: 10.1016/j.aca.2008.05.066 CrossRefPubMedGoogle Scholar
  46. Mulay IL, Roy R, Knox BE et al (1971) Trace metal analysis of cancerous and noncancerous human tissues. J Natl Cancer Inst 47:1–13PubMedGoogle Scholar
  47. Nakamaki T, Kawabata H, Bungo S (2004) Elevated levels of transferrin receptor 2 mRNA, not transferring receptor 1 mRNA, are associated with increased survival in acute myeloid leukaemia. Br J Haematol 125:42–49. doi: 10.1111/j.1365-2141.2004.04866.x CrossRefPubMedGoogle Scholar
  48. Nasulewicz A, Mazur A, Opolski A (2004) Role of copper in tumor angiogenesis—clinical implications. J Trace Elem Med Biol 18:1–8. doi: 10.1016/j.jtemb.2004.02.004 CrossRefPubMedGoogle Scholar
  49. Navarro Silvera SA, Rohan TE (2007) Trace elements and cancer risk: a review of the epidemiologic evidence. Cancer Causes Control 18:7–27. doi: 10.1007/s10552-006-0057-z CrossRefPubMedGoogle Scholar
  50. Ng KH, Bradley DA, Looi LM (1997) Elevated trace element concentrations in malignant breast tissues. Br J Radiol 70:375–382PubMedGoogle Scholar
  51. Nozoe T, Honda M, Inutsuka S et al (2003) Significance of immunohistochemical expression of manganese superoxide dismutase as a marker of malignant potential in colorectal carcinoma. Oncol Rep 10:39–43PubMedGoogle Scholar
  52. Owen RW (2001) Biomarkers in colorectal cancer, vol 154. IARC Scientific Publications (Biomarkers in Cancer Chemoprevention), pp 101–111Google Scholar
  53. Peters U, Chatterjee N, McGlynn KA et al (2004) Calcium intake and colorectal adenoma in a US colorectal cancer early detection program. Am J Clin Nutr 80:1358–1365PubMedGoogle Scholar
  54. Raju GJN, Sarita P, Kumar MR et al (2006) Trace elemental correlation study in malignant and normal breast tissue by PIXE technique. Nucl Instrum Methods Phys Res B 247:361–367CrossRefGoogle Scholar
  55. Reddy SB, Charles MJ, Raju GJN et al (2003) Trace elemental analysis of carcinoma kidney and stomach by PIXE method. Nucl Instrum Methods Phys Res B 207:345–355. doi: 10.1016/S0168-583X(03)00463-4 CrossRefGoogle Scholar
  56. Richardson DR et al (2008) Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents. Biochim Biophys Acta. doi: 10.1016/j.bbagen.2008.04.003
  57. Richardson-Boedler C (2007) Metal passivity as mechanism of metal carcinogenesis: chromium, nickel, iron, copper, cobalt, platinum, molybdenum. Toxicol Environ Chem 89:15–70. doi: 10.1080/02772240601008513 CrossRefGoogle Scholar
  58. Rizk SL, Sky-Peck HH (1984) Comparison between concentrations of trace elements in normal and neoplastic human breast tissue. Cancer Res 44:5390–5394PubMedGoogle Scholar
  59. Rubin H (2007) The logic of the membrane, magnesium, mitosis (MMM) model for the regulation of animal cell proliferation. Arch Biochem Biophys 458:16–23. doi: 10.1016/j.abb.2006.03.026 CrossRefPubMedGoogle Scholar
  60. Skrzydlewska E, Sulkowski S, Koda M et al (2005) Lipid peroxidation and antioxidant status in colorectal cancer. World J Gastroenterol 11:403–406PubMedGoogle Scholar
  61. Tashiro H, Kawamoto T, Okubo T et al (2003) Variation in the distribution of trace elements in hepatoma. Biol Trace Elem Res 95:49–63. doi: 10.1385/BTER:95:1:49 CrossRefPubMedGoogle Scholar
  62. Toyokuni S (1996) Iron induced carcinogenesis: the role or redox regulation. Free Radic Biol Med 20:553–566. doi: 10.1016/0891-5849(95)02111-6 CrossRefPubMedGoogle Scholar
  63. Ujiie S, Itoh Y, Kikuchi H, Wakui A (1995) Zinc distribution in malignant tumors. Biomed Res Trace Elem 6:45–50Google Scholar
  64. Valko M, Morris MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208. doi: 10.2174/0929867053764635 CrossRefPubMedGoogle Scholar
  65. Valko M, Rhodes CJ, Moncol J et al (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40. doi: 10.1016/j.cbi.2005.12.009 CrossRefPubMedGoogle Scholar
  66. Vallee BL, Auld DS (1990) Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29:5647–5659. doi: 10.1021/bi00476a001 CrossRefPubMedGoogle Scholar
  67. van den Brandt PA, Smits KM, Goldbohm RA et al (2007) Magnesium intake and colorectal cancer risk in the Netherlands Cohort Study. Br J Cancer 96:510–513. doi: 10.1038/sj.bjc.6603577 CrossRefPubMedGoogle Scholar
  68. Weinberg ED (1994) Association of iron with colorectal cancer. Biometals 7:211–216. doi: 10.1007/BF00149550 CrossRefPubMedGoogle Scholar
  69. Whitfield JF (2009) Calcium, calcium-sensing receptor and colon cancer. Cancer Lett 275:9–16. doi: 10.1016/j.canlet.2008.07.001 CrossRefPubMedGoogle Scholar
  70. Wolf FI et al (2009) Magnesium and tumors: ally or foe? Cancer Treat Rev. doi: 10.1016/j.ctrv.2009.01.003
  71. Zoriy MV, Dehnhardt M, Reifenberger G et al (2006) Imaging of Cu, Zn, Pb and U in human brain tumor resections by laser ablation inductively coupled plasma mass spectrometry. Int J Mass Spectrom 257:27–33. doi: 10.1016/j.ijms.2006.06.005 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Isela Lavilla
    • 1
  • Marta Costas
    • 1
  • Pilar San Miguel
    • 2
  • Jorge Millos
    • 1
  • Carlos Bendicho
    • 1
  1. 1.Departamento de Química Analítica y Alimentaria, Área de Química Analítica, Facultad de QuímicaUniversidad de VigoVigoSpain
  2. 2.Centro Hospitalario Povisa, Servicio de Anatomía PatológicaVigoSpain

Personalised recommendations