BioMetals

, Volume 22, Issue 4, pp 605–613 | Cite as

Coupled biogeochemical cycling of iron and manganese as mediated by microbial siderophores

  • Owen W. Duckworth
  • John R. Bargar
  • Garrison Sposito
Article

Abstract

Siderophores, biogenic chelating agents that facilitate Fe(III) uptake through the formation of strong complexes, also form strong complexes with Mn(III) and exhibit high reactivity with Mn (hydr)oxides, suggesting a pathway by which Mn may disrupt Fe uptake. In this review, we evaluate the major biogeochemical mechanisms by which Fe and Mn may interact through reactions with microbial siderophores: competition for a limited pool of siderophores, sorption of siderophores and metal–siderophore complexes to mineral surfaces, and competitive metal-siderophore complex formation through parallel mineral dissolution pathways. This rich interweaving of chemical processes gives rise to an intricate tapestry of interactions, particularly in respect to the biogeochemical cycling of Fe and Mn in marine ecosystems.

Keywords

Dissolution Ligand exchange Sorption Siderophore Iron Manganese 

Notes

Acknowledgments

We thank Greg Dick, Sara Holmström, Stephan Kraemer, Jim Morgan, Dorothy Parker, Jasquelin Peña, Lauren Saal, Alan Stone, Tom Spiro, Brad Tebo, and Sam Webb for thoughtful discussions. OWD thanks the North Carolina Agricultural Research Service for support.

References

  1. Aitken MD, Irvine RL (1990) Characterization of reactions catalyzed by manganese peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 276:405–414. doi:10.1016/0003-9861(90)90739-L PubMedCrossRefGoogle Scholar
  2. Bartlett RJ (1988) Manganese redox reactions and organic interactions in soils. In: Graham RD, Hannam RJ, Uren NC (eds) Manganese in soils and plants. Kluwer Academic, Dordrecht, pp 59–73Google Scholar
  3. Bartlett RJ, James BR (1993) Redox chemistry of soils. Adv Agron 50:151–209. doi:10.1016/S0065-2113(08)60834-2 CrossRefGoogle Scholar
  4. Behernfeld MJ, Kolber ZS (1999) Widespread iron limitation of phytoplankton in the South Pacific Ocean. Science 283:840–843. doi:10.1126/science.283.5403.840 CrossRefGoogle Scholar
  5. Boukhalfa H, Reiley SD, Michalczyk R et al (2006) Iron(III) coordination properties of a pyoverdin siderophore produced by Pseudomonas putida ATCC 33015. Inorg Chem 45:5607–5616. doi:10.1021/ic060196p PubMedCrossRefGoogle Scholar
  6. Carrasco N, Kretzschmar R, Pesch M-L et al (2007) Low concentrations of surfactants enhance siderophore-promoted dissolution of goethite. Environ Sci Technol 41:3633–3638. doi:10.1021/es062897r PubMedCrossRefGoogle Scholar
  7. Carrasco N, Kretzschmar R, Pesch M-L et al (2008) Effects of anionic surfactants on ligand-promoted dissolution of iron and aluminum hydroxides. J Colloid Interf Sci 321:279–287. doi:10.1016/j.jcis.2008.02.011 CrossRefGoogle Scholar
  8. Casey WH (1991) On the relative dissolution rates of some oxide and orthosilicate minerals. J Colloid Interf Sci 146:586–589. doi:10.1016/0021-9797(91)90225-W CrossRefGoogle Scholar
  9. Casey WH, Westrich HR (1992) Control of dissolution rates of orthosilicate minerals by divalent metal–oxygen bonds. Nature 355:157–159. doi:10.1038/355157a0 CrossRefGoogle Scholar
  10. Cheah SF, Kraemer SM, Cervini–Silva J et al (2003) Steady-state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: implications for the microbial acquisition of iron. Chem Geol 198:63–75. doi:10.1016/S0009-2541(02)00421-7 CrossRefGoogle Scholar
  11. Cocozza C, Tsao CCG, Cheah SF et al (2002) Temperature dependence of goethite dissolution promoted by trihydroxamate siderophores. Geochim Cosmochim Acta 66:431–438. doi:10.1016/S0016-7037(01)00780-3 CrossRefGoogle Scholar
  12. Cornell RM, Schwertmann U (1996) The iron oxides. VCH Publishers, Inc, New YorkGoogle Scholar
  13. Crowley DE (2006) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizospheric microorganism. Springer, Dordrecht, pp 169–198CrossRefGoogle Scholar
  14. da Silva JJR, Williams RJP (2001) The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press, OxfordGoogle Scholar
  15. Donat JR, Bruland KW (1995) Trace elements in the ocean. In: Salbu B, Steinnes E (eds) Trace elements in natural waters. CRC Press, Boca Raton, pp 247–281Google Scholar
  16. Duckworth OW, Sposito G (2005a) Siderophore-manganese(III) interactions I. Air-oxidation of manganese(II) promoted by desferrioxamine. B. Environ Sci Technol 39:6037–6044. doi:10.1021/es050275k CrossRefGoogle Scholar
  17. Duckworth OW, Sposito G (2005b) Siderophore-manganese(III) interactions II. Manganite dissolution promoted by desferrioxamine. B. Environ Sci Technol 39:6045–6051. doi:10.1021/es050276c CrossRefGoogle Scholar
  18. Duckworth OW, Sposito G (2007) Siderophore-promoted dissolution of synthetic and biogenic layer type Mn oxides. Chem Geol 242:500–511. doi:10.1016/j.chemgeo.2007.05.007 CrossRefGoogle Scholar
  19. Duckworth OW, Bargar JR, Sposito G (2008) Sorption of ferric iron from ferrioxamine B to synthetic and biogenic layer type manganese oxides. Geochim Cosmochim Acta 72:3371–3380. doi:10.1016/j.gca.2008.04.026 CrossRefGoogle Scholar
  20. Duckworth OW, Holmström SJM, Peña J, et al. (2009) Biogeochemistry of iron oxidation in a circumneutral freshwater habitat. Chem Geol (in press)Google Scholar
  21. Essén SA, Bylund D, Holmstrom SJM et al (2006) Quantification of hydroxamate siderophores in soil solutions of podzolic soil profiles in Sweden. Biometals 19:269–282. doi:10.1007/s10534-005-8418-8 PubMedCrossRefGoogle Scholar
  22. Farkas E, Enyedy EA, Zekany L et al (2001) Interaction between iron(II) and hydroxamic acids: oxidation of iron(II) to iron(III) by desferrioxamine B under anaerobic conditions. J Inorg Biochem 83:107–114. doi:10.1016/S0162-0134(00)00197-5 PubMedCrossRefGoogle Scholar
  23. Faulkner KM, Stevens RD, Fridovich I (1994) Characterization of Mn(III) complexes of linear and cyclic desferrioxamine as mimics of superoxide dismutase activity. Arch Biochem Biophys 310:341–346. doi:10.1006/abbi.1994.1176 PubMedCrossRefGoogle Scholar
  24. Garibaldi JA, Neilands JB (1956) Formation of iron-binding compounds by micro-organisms. Nature 177:526–527. doi:10.1038/177526a0 PubMedCrossRefGoogle Scholar
  25. Hamm RE, Suwyn MA (1967) Preparation and characterization of some aminopolycarboxylate complexes of manganese(III). Inorg Chem 6:139–142. doi:10.1021/ic50047a032 CrossRefGoogle Scholar
  26. Helm L, Merbach AE (1999) Water exchange on metal ions: experiments and simulations. Coord Chem Rev 187:151–181. doi:10.1016/S0010-8545(99)90232-1 CrossRefGoogle Scholar
  27. Hernlem BJ, Vane LM, Sayles GD (1999) The application of siderophores for metal recovery and waste remediation: examination of correlations for prediction of metal affinities. Water Resour 33:951–960CrossRefGoogle Scholar
  28. Hersman L, Lloyd T, Sposito G (1995) Siderophore-promoted dissolution of hematite. Geochim Cosmochim Acta 59:3327–3330. doi:10.1016/0016-7037(95)00221-K CrossRefGoogle Scholar
  29. Holmen BA, Tejedor–Tejedor I, Casey WH (1997) Hydroxamate complexes in solution and at the goethite-water interface: a cylindrical internal reflection Fourier transform infrared spectroscopy study. Langmuir 13:2197–2206. doi:10.1021/la960944v CrossRefGoogle Scholar
  30. Holmström SJM, Lundström US, Finlay RD et al (2004) Siderophores in forest soil solution. Biogeochem 71:247–258. doi:10.1007/s10533-004-9915-5 CrossRefGoogle Scholar
  31. Jones D (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205:25–44. doi:10.1023/A:1004356007312 CrossRefGoogle Scholar
  32. Kim D, Duckworth OW, Strathmann TJ (2009) Hydroxamate siderophore-promoted reduction of nitroaromatic contaminants by iron(II). Geochim Cosmochim Acta 73:1297–1311. doi:10.1016/j.gca.2008.11.039 CrossRefGoogle Scholar
  33. Klewicki JK, Morgan JJ (1998) Kinetic behavior of Mn(III) complexes of pyrophosphate, EDTA, and citrate. Environ Sci Technol 32:2916–2922. doi:10.1021/es980308e CrossRefGoogle Scholar
  34. Kraemer SM (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66:3–18. doi:10.1007/s00027-003-0690-5 CrossRefGoogle Scholar
  35. Kraemer SM, Xu JD, Raymond KN et al (2002) Adsorption of Pb(II) and Eu(III) by oxide minerals in the presence of natural and synthetic hydroxamate siderophores. Environ Sci Technol 36:1287–1291. doi:10.1021/es010182c PubMedCrossRefGoogle Scholar
  36. Kraemer SM, Butler A, Borer P (2005) Siderophores and the dissolution of iron-bearing minerals in marine systems. In: Banfield JF, Cervini–Silva J, Nealson KH et al (eds) Molecular geomicrobiology. Mineralogical Society of America, Chantilly, pp 53–84Google Scholar
  37. Kraemer SM, Crowley DE, Kretzschmar R (2006) Geochemical aspects of phytosiderophore-promoted iron acquisition by plants. Adv Agron 91:1–46. doi:10.1016/S0065-2113(06)91001-3 CrossRefGoogle Scholar
  38. Landing WM, Bruland KW (1980) Manganese in the North Pacific. Earth Planet Sci Lett 49:45–56. doi:10.1016/0012-821X(80)90149-1 CrossRefGoogle Scholar
  39. Lloyd T (1999) Dissolution of Fe(III) and Mn(III, IV)-(hydr)oxides by desferrioxamine B. California Institute of Technology, PasadenaGoogle Scholar
  40. Marcrellis HM, Trick CG, Rue EL et al (2001) Collection and detection of natural iron-binding ligands from seawater. Mar Chem 76:175–187CrossRefGoogle Scholar
  41. Martin ST (2005) Precipitation and dissolution of iron and manganese oxides. In: Grassian VH (ed) Environmental catalysis. Marcel–Dekker, CRC Press, Boca Raton, pp 61–81Google Scholar
  42. Morgan JJ (2000) Manganese in natural waters and earth’s crust: it’s availability to organisms. Met Ions Biol Syst 37:1–34PubMedGoogle Scholar
  43. Mucha P, Rekowshi P, Kosakowska A et al (1999) Separation of siderophore by capillary electrophoresis. J Chromatogr A 830:183–189. doi:10.1016/S0021-9673(98)00907-8 CrossRefGoogle Scholar
  44. Neubauer U, Furrer G, Schulin R (2002) Heavy metal sorption on soil minerals affected by the siderophore desferrioxamine B: the role of Fe(III) (hydr)oxides and dissolved Fe(III). Eur J Soil Sci 53:45–55. doi:10.1046/j.1365-2389.2002.00425.x CrossRefGoogle Scholar
  45. Parker DL, Sposito G, Tebo BM (2004) Manganese(III) binding to a pyoverdine siderophore produced by a manganese(II)-oxidizing bacterium. Geochim Cosmochim Acta 68:4809–4820. doi:10.1016/j.gca.2004.05.038 CrossRefGoogle Scholar
  46. Parker DL, Morita T, Mozafarzadeh ML et al (2007) Inter-relationships of MnO2 precipitation, siderophore-Mn-(III) complex formation, siderophore degradation, and iron limitation in Mn-(II)-oxidizing bacterial cultures. Geochim Cosmochim Acta 71:5672–5683. doi:10.1016/j.gca.2007.03.042 CrossRefGoogle Scholar
  47. Peña J, Duckworth OW, Bargar JR et al (2007) Dissolution of hausmannite in the presence of the trihydroxamate siderophore desferrioxamine B. Geochim Cosmochim Acta 71:5661–5671. doi:10.1016/j.gca.2007.03.043 CrossRefGoogle Scholar
  48. Post JE (1999) Manganese oxide minerals: crystal structures and economic and environmental significance. Proc Natl Acad Sci USA 96:3447–3454. doi:10.1073/pnas.96.7.3447 PubMedCrossRefGoogle Scholar
  49. Powell RT, Donat JR (2001) Organic complexation and speciation of iron in the south and equatorial Atlantic. Deep-Sea Res II 48:2877–2893. doi:10.1016/S0967-0645(01)00022-4 CrossRefGoogle Scholar
  50. Reichard PU, Kretzschmar R, Kraemer SM (2007) Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochim Cosmochim Acta 71:5635–5650. doi:10.1016/j.gca.2006.12.022 CrossRefGoogle Scholar
  51. Rue EL, Bruland KW (1995) Complexation of iron(III) by natural organic-ligands in the central North Pacific as determined by a new competitive ligand equilibration adsorptive cathodic stripping voltammetric method. Mar Chem 50:117–138. doi:10.1016/0304-4203(95)00031-L CrossRefGoogle Scholar
  52. Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767. doi:10.1107/S0567739476001551 CrossRefGoogle Scholar
  53. Siebner–Freibach H, Hadar Y, Chen Y (2004) Interaction of iron chelating agents with clay minerals. Soil Sci Soc Am J 68:470–480CrossRefGoogle Scholar
  54. Siebner–Freibach H, Hadar Y, Yariv S et al (2006) Thermospectroscopic study of the adsorption mechanism of the hydroxamic siderophore ferrioxamine B by calcium montmorillonite. J Agric Food Chem 54:1399–1408. doi:10.1021/jf051924e PubMedCrossRefGoogle Scholar
  55. Sisley MJ, Jordan RB (2006) First hydrolysis constants of hexaaquocobalt(III) and -manganese(III): longstanding issues resolved. Inorg Chem 45:10758–10763. doi:10.1021/ic0612956 PubMedCrossRefGoogle Scholar
  56. Sparks DL (2003) Environmental soil chemistry. Academic Press, San DiegoGoogle Scholar
  57. Stumm W, Morgan JJ (1996) Aquatic chemistry. Wiley, New YorkGoogle Scholar
  58. Tebo BM, Bargar JR, Clement BG et al (2004) Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Planet Sci 32:287–328. doi:10.1146/annurev.earth.32.101802.120213 CrossRefGoogle Scholar
  59. Trouwborst RE, Clement BG, Tebo BM et al (2006) Soluble Mn(III) in suboxic zones. Science 313:1955–1957. doi:10.1126/science.1132876 PubMedCrossRefGoogle Scholar
  60. Witter AE, Hutchins DA, Butler A et al (2000) Determination of conditional stability constants and kinetic constants for strong model Fe-binding ligands in seawater. Mar Chem 69:1–17. doi:10.1016/S0304-4203(99)00087-0 CrossRefGoogle Scholar
  61. Wolff–Boenisch D, Traina SJ (2007) The effect of desferrioxamine B, enterobactin, oxalic acid, and Na-alginate on the dissolution of uranyl-treated goethite at pH 6 and 25 C. Chem Geol 243:357–368. doi:10.1016/j.chemgeo.2007.06.013 CrossRefGoogle Scholar
  62. Yeats PA, Dalzeil JA, Moran SB (1992) A comparison of dissolved and particulate Mn and Al distributions in the Western North Atlantic. Oceanol Acta 15:609–619Google Scholar
  63. Yoshida T, Hayashi K, Ohmoto H (2002) Dissolution of iron hydroxides by marine bacterial siderophore. Chem Geol 184:1–9. doi:10.1016/S0009-2541(01)00297-2 CrossRefGoogle Scholar
  64. Yoshida T, Ozaki T, Ohnuki T et al (2004) Interactions of trivalent and tetravalent heavy metal-siderophore complexes with Pseudomonas fluorescens. Radiochim Acta 92:749–753. doi:10.1524/ract.92.9.749.55003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Owen W. Duckworth
    • 1
  • John R. Bargar
    • 2
  • Garrison Sposito
    • 3
  1. 1.Department of Soil ScienceNorth Carolina State UniversityRaleighUSA
  2. 2.Stanford Synchrotron Radiation LightsourceMenlo ParkUSA
  3. 3.Division of Ecosystem SciencesUniversity of CaliforniaBerkeleyUSA

Personalised recommendations