BioMetals

, Volume 22, Issue 4, pp 691–695 | Cite as

Salmochelin, the long-overlooked catecholate siderophore of Salmonella

  • Silke I. Müller
  • Marianne Valdebenito
  • Klaus Hantke
Article

Abstract

Salmochelin is a C-glucosylated enterobactin produced by Salmonella species, uropathogenic and avian pathogenic Escherichia coli strains, and certain Klebsiella strains. It was the first glucosylated siderophore described. The glucosylation has been interpreted as a bacterial evasion mechanism against the mammalian catecholate siderophore-binding protein siderocalin (NGAL-lipocalin). The synthesis, excretion, and uptake of salmochelin requires five genes, iroBCDEN, and also the enterobactin biosynthesis and utilization system. Some salmochelin-producing strains also secrete microcins, which possess a C-terminal, linear glucosyl-enterobactin moiety. These microcins recognize the catecholate siderophore receptors IroN, Cir, Fiu, and FepA, and may inhibit the growth of competitors for catecholate siderophores.

Keywords

Salmochelin Iron transport Siderocalin Salmonella C-glucosylation Microcin E492 

Notes

Acknowledgments

We thank Andreas Kulik for help with the illustrations, G. Winkelmann and the group of R. D. Süßmuth group for collaborations, and V. Braun and Karen Brune (Marburg) for comments on the manuscript and editing. Financial support by the DFG is gratefully acknowledged.

References

  1. Bäumler AJ, Tsolis RM, van der Velden AW, Stojiljkovic I, Anic S, Heffron F (1996) Identification of a new iron regulated locus of Salmonella typhi. Gene 183:207–213. doi:10.1016/S0378-1119(96)00560-4 PubMedCrossRefGoogle Scholar
  2. Bister B, Bischoff D, Nicholson GJ, Valdebenito M, Schneider K, Winkelmann G, Hantke K, Süssmuth RD (2004) The structure of salmochelins: C-glucosylated enterobactins of Salmonella enterica. Biometals 17:471–481. doi:10.1023/B:BIOM.0000029432.69418.6a PubMedCrossRefGoogle Scholar
  3. Crouch ML, Castor M, Karlinsey JE, Kalhorn T, Fang FC (2008) Biosynthesis and IroC-dependent export of the siderophore salmochelin are essential for virulence of Salmonella enterica serovar Typhimurium. Mol Microbiol 67:971–983. doi:10.1111/j.1365-2958.2007.06089.x PubMedCrossRefGoogle Scholar
  4. Feldmann F, Sorsa LJ, Hildinger K, Schubert S (2007) The salmochelin siderophore receptor IroN contributes to invasion of urothelial cells by extraintestinal pathogenic Escherichia coli in vitro. Infect Immun 75:3183–3187. doi:10.1128/IAI.00656-06 PubMedCrossRefGoogle Scholar
  5. Fischbach MA, Lin H, Liu DR, Walsh CT (2005) In vitro characterization of IroB, a pathogen-associated C-glycosyltransferase. Proc Natl Acad Sci USA 102:571–576. doi:10.1073/pnas.0408463102 PubMedCrossRefGoogle Scholar
  6. Fischbach MA, Lin H, Zhou L, Yu Y, Abergel RJ, Liu DR, Raymond KN, Wanner BL, Strong RK, Walsh CT, Aderem A, Smith KD (2006) The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc Natl Acad Sci USA 103:16502–16507. doi:10.1073/pnas.0604636103 PubMedCrossRefGoogle Scholar
  7. Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S, Aderem A (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432:917–921. doi:10.1038/nature03104 PubMedCrossRefGoogle Scholar
  8. Fu JM (1985) The structure elucidation of methyl pacifarinic acid. Thesis, University of Illinois at ChicagoGoogle Scholar
  9. Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10:1033–1043. doi:10.1016/S1097-2765(02)00708-6 PubMedCrossRefGoogle Scholar
  10. Hantke K, Nicholson G, Rabsch W, Winkelmann G (2003) Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc Natl Acad Sci USA 100:3677–3682. doi:10.1073/pnas.0737682100 PubMedCrossRefGoogle Scholar
  11. Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N (1993) Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 268:10425–10432PubMedGoogle Scholar
  12. Lin H, Fischbach MA, Liu DR, Walsh CT (2005) In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J Am Chem Soc 127:11075–11084. doi:10.1021/ja0522027 PubMedCrossRefGoogle Scholar
  13. Mercado G, Tello M, Marin M, Monasterio O, Lagos R (2008) The production in vivo of microcin E492 with antibacterial activity depends on salmochelin and EntF. J Bacteriol 190:5464–5471. doi:10.1128/JB.00351-08 PubMedCrossRefGoogle Scholar
  14. Patzer SI, Baquero MR, Bravo D, Moreno F, Hantke K (2003) The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology 149:2557–2570. doi:10.1099/mic.0.26396-0 PubMedCrossRefGoogle Scholar
  15. Rabsch W, Methner U, Voigt W, Tschäpe H, Reissbrodt R, Williams PH (2003) Role of receptor proteins for enterobactin and 2, 3-dihydroxybenzoylserine in virulence of Salmonella enterica. Infect Immun 71:6953–6961. doi:10.1128/IAI.71.12.6953-6961.2003 PubMedCrossRefGoogle Scholar
  16. Schneider HA (1967) Ecological ectocrines in experimental epidemiology. A new class, the “pacifarins,” is delineated in the nutritional ecology of mouse salmonellosis. Science 158:597–603. doi:10.1126/science.158.3801.597 PubMedCrossRefGoogle Scholar
  17. Thomas X, Destoumieux-Garzon D, Peduzzi J, Afonso C, Blond A, Birlirakis N, Goulard C, Dubost L, Thai R, Tabet JC, Rebuffat S (2004) Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity. J Biol Chem 279:28233–28242. doi:10.1074/jbc.M400228200 PubMedCrossRefGoogle Scholar
  18. Torkkell S, Kunnari T, Palmu K, Hakala J, Mantsala P, Ylihonko K (2000) Identification of a cyclase gene dictating the C-9 stereochemistry of anthracyclines from Streptomyces nogalater. Antimicrob Agents Chemother 44:396–399. doi:10.1128/AAC.44.2.396-399.2000 PubMedCrossRefGoogle Scholar
  19. Valdebenito M, Müller SI, Hantke K (2007) Special conditions allow binding of the siderophore salmochelin to siderocalin (NGAL-lipocalin). FEMS Microbiol Lett 277:182–187. doi:10.1111/j.1574-6968.2007.00956.x PubMedCrossRefGoogle Scholar
  20. Wawszkiewicz EJ (1975) Riddle of pacifarins. In: Schlesinger MJ (ed) Microbiology—1974. ASM, Washington D.C., pp 299–305Google Scholar
  21. Wawszkiewicz EJ, Schneider HA (1975) Control of salmonellosis pacifarin biosynthesis by iron. Infect Immun 11:69–72PubMedGoogle Scholar
  22. Zhu M, Valdebenito M, Winkelmann G, Hantke K (2005) Functions of the siderophore esterases IroD and IroE in iron-salmochelin utilization. Microbiology 151:2363–2372. doi:10.1099/mic.0.27888-0 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Silke I. Müller
    • 1
  • Marianne Valdebenito
    • 1
  • Klaus Hantke
    • 1
  1. 1.Lehrstuhl für Mikrobiologie – Organismische InteraktionenUniversität TübingenTübingenGermany

Personalised recommendations