, Volume 22, Issue 4, pp 557–564 | Cite as

Siderocalins: siderophore-binding proteins of the innate immune system

  • Matthew C. Clifton
  • Colin Corrent
  • Roland K. StrongEmail author


Recent studies have revealed that the mammalian immune system directly interferes with siderophore-mediated iron acquisition through siderophore-binding proteins and that the association of certain siderophores, or siderophore modifications, with virulence is a direct response of pathogens to evade these defenses.


Siderophores Siderophore-binding proteins Bacterial virulence Bacterial iron acquisition Innate immunity 


  1. Abergel RJ, Moore EG, Strong RK et al (2006a) Microbial evasion of the immune system: structural modifications of enterobactin impair siderocalin recognition. J Am Chem Soc 128(34):10998–10999. doi: 10.1021/ja062476+ PubMedCrossRefGoogle Scholar
  2. Abergel RJ, Wilson MK, Arceneaux JE et al (2006b) Anthrax pathogen evades the mammalian immune system through stealth siderophore production. Proc Natl Acad Sci USA 103(49):18499–18503. doi: 10.1073/pnas.0607055103 PubMedCrossRefGoogle Scholar
  3. Abergel RJ, Clifton MC, Pizarro JC et al (2008) The siderocalin/enterobactin interaction: a link between mammalian immunity and bacterial iron transport. J Am Chem Soc 130(34):11524–11534. doi: 10.1021/ja803524w PubMedCrossRefGoogle Scholar
  4. Berger T, Togawa A, Duncan GS et al (2006) Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. Proc Natl Acad Sci USA 103(6):1834–1839. doi: 10.1073/pnas.0510847103 PubMedCrossRefGoogle Scholar
  5. Breustedt DA, Korndorfer IP, Redl B et al (2005) The 1.8-a crystal structure of human tear lipocalin reveals an extended branched cavity with capacity for multiple ligands. J Biol Chem 280(1):484–493PubMedGoogle Scholar
  6. Buchanan SK, Smith BS, Venkatramani L et al (1999) Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat Struct Biol 6(1):56–63. doi: 10.1038/4931 PubMedCrossRefGoogle Scholar
  7. Budzikiewicz H (2001) Siderophore-antibiotic conjugates used as trojan horses against Pseudomonas aeruginosa. Curr Top Med Chem 1(1):73–82. doi: 10.2174/1568026013395524 PubMedCrossRefGoogle Scholar
  8. Carniel E (2001) The Yersinia high-pathogenicity island: an iron-uptake island. Microbes Infect 3(7):561–569. doi: 10.1016/S1286-4579(01)01412-5 PubMedCrossRefGoogle Scholar
  9. Crosa JH (1989) Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol Rev 53(4):517–530PubMedGoogle Scholar
  10. Descalzi Cancedda F, Dozin B, Zerega B et al (2000) Ex-FABP: a fatty acid binding lipocalin developmentally regulated in chicken endochondral bone formation and myogenesis. Biochim Biophys Acta 1482(1–2):127–135PubMedGoogle Scholar
  11. Devarajan P (2007) Neutrophil gelatinase-associated lipocalin: new paths for an old shuttle. Cancer Ther 5(B):463–470PubMedGoogle Scholar
  12. Devireddy LR, Teodoro JG, Richard FA et al (2001) Induction of apoptosis by a secreted lipocalin that is transcriptionally regulated by IL-3 deprivation. Science 293(5531):829–834. doi: 10.1126/science.1061075 PubMedCrossRefGoogle Scholar
  13. Devireddy LR, Gazin C, Zhu X et al (2005) A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123(7):1293–1305. doi: 10.1016/j.cell.2005.10.027 PubMedCrossRefGoogle Scholar
  14. Ellison RT (1994) The effects of lactoferrin on gram-negative bacteria. Adv Exp Med Biol 357:71–90PubMedGoogle Scholar
  15. Fang WK, Xu LY, Lu XF et al (2007) A novel alternative spliced variant of neutrophil gelatinase-associated lipocalin receptor in oesophageal carcinoma cells. Biochem J 403(2):297–303. doi: 10.1042/BJ20060836 PubMedCrossRefGoogle Scholar
  16. Fischbach MA, Lin H, Liu DR et al (2004) In vitro characterization of IroB, a pathogen-associated C-glycosyltransferase. Proc Natl Acad Sci USA 102(3):571–576PubMedCrossRefGoogle Scholar
  17. Fischbach MA, Lin H, Zhou L et al (2006) The pathogen-associated IroA gene cluster mediates bacterial evasion of lipocalin 2. Proc Natl Acad Sci U S A. 103(44):16502–16507PubMedCrossRefGoogle Scholar
  18. Flo TH, Smith KD, Sato S et al (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432(7019):917–921. doi: 10.1038/nature03104 PubMedCrossRefGoogle Scholar
  19. Flower DR (2000) Beyond the superfamily: the lipocalin receptors. Biochim Biophys Acta 1482(1–2):327–336PubMedGoogle Scholar
  20. Fluckinger M, Haas H, Merschak P et al (2004) Human tear lipocalin exhibits antimicrobial activity by scavenging microbial siderophores. Antimicrob Agents Chemother 48(9):3367–3372. doi: 10.1128/AAC.48.9.3367-3372.2004 PubMedCrossRefGoogle Scholar
  21. Goetz DH, Willie ST, Armen RS et al (2000) Ligand preference inferred from the structure of neutrophil gelatinase associated lipocalin. Biochemistry 39(8):1935–1941. doi: 10.1021/bi992215v PubMedCrossRefGoogle Scholar
  22. Goetz DH, Holmes MA, Borregaard N et al (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10(5):1033–1043. doi: 10.1016/S1097-2765(02)00708-6 PubMedCrossRefGoogle Scholar
  23. Hartl M, Matt T, Schuler W et al (2003) Cell transformation by the v-myc oncogene abrogates c-Myc/Max-mediated suppression of a C/EBP beta-dependent lipocalin gene. J Mol Biol 333(1):33–46. doi: 10.1016/j.jmb.2003.08.018 PubMedCrossRefGoogle Scholar
  24. Holmes MA, Paulsene W, Jide X et al (2005) Siderocalin (Lcn 2) also binds carboxymycobactins, potentially defending against mycobacterial infections through iron sequestration. Struct Camb 13(1):29–41Google Scholar
  25. Horwitz LD, Sherman NA, Kong Y et al (1998) Lipophilic siderophores of Mycobacterium tuberculosis prevent cardiac reperfusion injury. Proc Natl Acad Sci USA 95(9):5263–5268. doi: 10.1073/pnas.95.9.5263 PubMedCrossRefGoogle Scholar
  26. Hunter HN, Fulton DB, Ganz T et al (2002) The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem 277(40):37597–37603. doi: 10.1074/jbc.M205305200 PubMedCrossRefGoogle Scholar
  27. Hvidberg V, Jacobsen C, Strong RK et al (2005) The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett 579(3):773–777. doi: 10.1016/j.febslet.2004.12.031 PubMedCrossRefGoogle Scholar
  28. Jurado RL (1997) Iron, infections, and anemia of inflammation. Clin Infect Dis 25(4):888–895. doi: 10.1086/515549 PubMedCrossRefGoogle Scholar
  29. Kamezaki K, Shimoda K, Numata A et al (2003) The lipocalin 24p3, which is an essential molecule in IL-3 withdrawal-induced apoptosis, is not involved in the G-CSF withdrawal-induced apoptosis. Eur J Haematol 71(6):412–417. doi: 10.1046/j.0902-4441.2003.00160.x PubMedCrossRefGoogle Scholar
  30. Kjeldsen L, Bainton DF, Sengelov H et al (1994) Identification of neutrophil gelatinase-associated lipocalin as a novel matrix protein of specific granules in human neutrophils. Blood 83(3):799–807PubMedGoogle Scholar
  31. Kjeldsen L, Cowland JB, Borregaard N (2000) Human neutrophil gelatinase-associated lipocalin and homologous proteins in rat and mouse. Biochim Biophys Acta 1482(1–2):272–283PubMedGoogle Scholar
  32. Klee SR, Nassif X, Kusecek B et al (2000) Molecular and biological analysis of eight genetic islands that distinguish Neisseria meningitidis from the closely related pathogen Neisseria gonorrhoeae. Infect Immun 68(4):2082–2095. doi: 10.1128/IAI.68.4.2082-2095.2000 PubMedCrossRefGoogle Scholar
  33. Lin H, Monaco G, Sun T et al (2005) Bcr-Abl-mediated suppression of normal hematopoiesis in leukemia. Oncogene 24(20):3246–3256. doi: 10.1038/sj.onc.1208500 PubMedCrossRefGoogle Scholar
  34. Lovelace LL, Chiswell B, Slade DJ et al (2008) Crystal structure of complement protein C8gamma in complex with a peptide containing the C8gamma binding site on C8alpha: implications for C8gamma ligand binding. Mol Immunol 45(3):750–756. doi: 10.1016/j.molimm.2007.06.359 PubMedCrossRefGoogle Scholar
  35. McGrath H Jr, Rigby PG (2004) Hepcidin: inflammation’s iron curtain. Rheumatology (Oxford) 43(11):1323–1325. doi: 10.1093/rheumatology/keh345 CrossRefGoogle Scholar
  36. Meilinger M, Haumer M, Szakmary KA et al (1995) Removal of lactoferrin from plasma is mediated by binding to low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor and transport to endosomes. FEBS Lett 360(1):70–74. doi: 10.1016/0014-5793(95)00082-K PubMedCrossRefGoogle Scholar
  37. Moss JE, Cardozo TJ, Zychlinsky A et al (1999) The selC-associated SHI-2 pathogenicity island of Shigella flexneri. Mol Microbiol 33(1):74–83. doi: 10.1046/j.1365-2958.1999.01449.x PubMedCrossRefGoogle Scholar
  38. Muller A, Wilkinson AJ, Wilson KS et al (2006) An [{Fe(mecam)}2]6- bridge in the crystal structure of a ferric enterobactin binding protein. Angew Chem Int Ed Engl 45(31):5132–5136. doi: 10.1002/anie.200601198 PubMedCrossRefGoogle Scholar
  39. Neilands JB (1981) Microbial iron compounds. Annu Rev Biochem 50:715–731. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  40. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270(45):26723–26726PubMedGoogle Scholar
  41. Nemeth E, Tuttle MS, Powelson J et al (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306(5704):2090–2093. doi: 10.1126/science.1104742 PubMedCrossRefGoogle Scholar
  42. Ortlund E, Parker CL, Schreck SF et al (2002) Crystal structure of human complement protein C8gamma at 1.2 A resolution reveals a lipocalin fold and a distinct ligand binding site. Biochemistry 41(22):7030–7037. doi: 10.1021/bi025696i PubMedCrossRefGoogle Scholar
  43. Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941. doi: 10.1146/annurev.micro.54.1.881 PubMedCrossRefGoogle Scholar
  44. Raymond KN, Müller G, Matzanke BF (1984) Complexation of iron by siderophores. a review of their solution and structural chemistry and biological function. In: Boschke FL (ed) Topics in current chemistry, vol 123. Springer, Berlin, pp 50–102Google Scholar
  45. Richardson DR (2005) Molecular mechanisms of iron uptake by cells and the use of iron chelators for the treatment of cancer. Curr Med Chem 12(23):2711–2729. doi: 10.2174/092986705774462996 PubMedCrossRefGoogle Scholar
  46. Roosenberg JM II, Lin YM, Lu Y et al (2000) Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr Med Chem 7(2):159–197PubMedGoogle Scholar
  47. Saito A, Pietromonaco S, Loo AK et al (1994) Complete cloning and sequencing of rat gp330/“megalin”, a distinctive member of the low density lipoprotein receptor gene family. Proc Natl Acad Sci USA 91(21):9725–9729. doi: 10.1073/pnas.91.21.9725 PubMedCrossRefGoogle Scholar
  48. Strausberg RL, Feingold EA, Grouse LH et al (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 99(26):16899–16903. doi: 10.1073/pnas.242603899 PubMedCrossRefGoogle Scholar
  49. Suzuki K, Lareyre JJ, Sanchez D et al (2004) Molecular evolution of epididymal lipocalin genes localized on mouse chromosome 2. Gene 339:49–59. doi: 10.1016/j.gene.2004.06.027 PubMedCrossRefGoogle Scholar
  50. Triebel S, Bläser J, Reinke H et al (1992) A 25 kDa a2-microglobulin-related protein is a component of the 125 kDa form of human gelatinase. FEBS Lett 3:386–388. doi: 10.1016/0014-5793(92)81511-J CrossRefGoogle Scholar
  51. Vokes SA, Reeves SA, Torres AG et al (1999) The aerobactin iron transport system genes in Shigella flexneri are present within a pathogenicity island. Mol Microbiol 33(1):63–73. doi: 10.1046/j.1365-2958.1999.01448.x PubMedCrossRefGoogle Scholar
  52. Warner PJ, Williams PH, Bindereif A et al (1981) ColV plasmid-specific aerobactin synthesis by invasive strains of Escherichia coli. Infect Immun 33(2):540–545PubMedGoogle Scholar
  53. Weinberg ED (1984) Iron withholding: a defense against infection and neoplasia. Physiol Rev 64(1):65–102PubMedGoogle Scholar
  54. Willnow TE, Goldstein JL, Orth K et al (1992) Low density lipoprotein receptor-related protein and gp330 bind similar ligands, including plasminogen activator-inhibitor complexes and lactoferrin, an inhibitor of chylomicron remnant clearance. J Biol Chem 267(36):26172–26180PubMedGoogle Scholar
  55. Winkelmann G (2002) Microbial siderophore-mediated transport. Biochem Soc Trans 30(4):691–696. doi: 10.1042/BST0300691 PubMedCrossRefGoogle Scholar
  56. Xu S, Venge P (2000) Lipocalins as biochemical markers of disease. Biochim Biophys Acta 1482(1–2):298–307PubMedGoogle Scholar
  57. Yang J, Goetz D, Li JY et al (2002) An iron delivery pathway mediated by a lipocalin. Mol Cell 10(5):1045–1056. doi: 10.1016/S1097-2765(02)00710-4 PubMedCrossRefGoogle Scholar
  58. Yang J, Mori K, Li JY et al (2003) Iron, lipocalin, and kidney epithelia. Am J Physiol Renal Physiol 285(1):F9–F18PubMedGoogle Scholar
  59. Zhou D, Hardt WD, Galan JE (1999) Salmonella typhimurium encodes a putative iron transport system within the centisome 63 pathogenicity island. Infect Immun 67(4):1974–1981PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Matthew C. Clifton
    • 1
  • Colin Corrent
    • 1
  • Roland K. Strong
    • 1
    Email author
  1. 1.Division of Basic SciencesFred Hutchinson Cancer Research CenterSeattleUSA

Personalised recommendations