, Volume 22, Issue 1, pp 197–205

Quantitative imaging of metals in tissues



Metals and other trace elements play an important role in many physiological processes in all biological systems. Characterization of precise metal concentrations, their spatial distribution, and chemical speciation in individual cells and cell compartments will provide much needed information to explore the metallome in health and disease. Synchrotron-based X-ray fluorescent microscopy (SXRF) is the ideal tool to quantitatively measure trace elements with high sensitivity at high resolution. SXRF is based on the intrinsic fluorescent properties of each element and is therefore element specific. Recent advances in synchrotron technology and optimization of sample preparation have made it possible to image metals in mammalian tissue with submicron resolution. In combination with correlative methods, SXRF can now, for example, determine the amount and oxidation state of trace elements in intra-cellular compartments and identify cell-specific changes in the metal ion content during development or disease progression.


Synchrotron-based X-ray fluorescence Metallome Metal imaging Elemental maps Submicron resolution 


  1. Ala A, Walker AP, Ashkan K, Dooley JS, Schilsky ML (2007) Wilson’s disease. Lancet 369:397–408. doi:10.1016/S0140-6736(07)60196-2 PubMedCrossRefGoogle Scholar
  2. Becker JS, Mounicou S, Zoriy MV, Becker JS, Lobinski R (2008) Analysis of metal-binding proteins separated by non-denaturating gel electrophoresis using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Talanta 76:1183–1188. doi:10.1016/j.talanta.2008.05.023 PubMedCrossRefGoogle Scholar
  3. Becker JS, Zoriy M, Becker JS, Pickhardt C, Damoc E, Juhacz G, Palkovits M, Przybylski M (2005) Determination of phosphorus-, copper-, and zinc-containing human brain proteins by LA-ICPMS and MALDI-FTICR-MS. Anal Chem 77:5851–5860. doi:10.1021/ac0506579 PubMedCrossRefGoogle Scholar
  4. Buiakova OI, Xu J, Lutsenko S, Zeitlin S, Das K, Das S, Ross BM, Mekios C, Scheinberg IH, Gilliam TC (1999) Null mutation of the murine ATP7B (Wilson disease) gene results in intracellular copper accumulation and late-onset hepatic nodular transformation. Hum Mol Genet 8:1665–1671. doi:10.1093/hmg/8.9.1665 PubMedCrossRefGoogle Scholar
  5. Choi DW, Koh JY (1998) Zinc and brain injury. Annu Rev Neurosci 21:347–375. doi:10.1146/annurev.neuro.21.1.347 PubMedCrossRefGoogle Scholar
  6. Danks DM, Campbell PE, Stevens BJ, Mayne V, Cartwright E (1972) Menkes’s kinky hair syndrome. An inherited defect in copper absorption with widespread effects. Pediatrics 50:188–201PubMedGoogle Scholar
  7. Dillon CT, Lay PA, Kennedy BJ, Stampfl AP, Cai Z, Ilinski P, Rodrigues W, Legnini DG, Lai B, Maser J (2002) Hard X-ray microprobe studies of chromium(VI)-treated V79 Chinese hamster lung cells: intracellular mapping of the biotransformation products of a chromium carcinogen. J Biol Inorg Chem 7:640–645. doi:10.1007/s00775-002-0343-5 PubMedCrossRefGoogle Scholar
  8. Finney L, Mandava S, Ursos L, Zhang W, Rodi D, Vogt S, Legnini D, Maser J, Ikpatt F, Olopade OI, Glesne D (2007) X-ray fluorescence microscopy reveals large-scale relocalization and extracellular translocation of cellular copper during angiogenesis. Proc Natl Acad Sci USA 104:2247–2252. doi:10.1073/pnas.0607238104 PubMedCrossRefGoogle Scholar
  9. Hall MD, Dillon CT, Zhang M, Beale P, Cai Z, Lai B, Stampfl AP, Hambley TW (2003) The cellular distribution and oxidation state of platinum(II) and platinum(IV) antitumour complexes in cancer cells. J Biol Inorg Chem 8:726–732. doi:10.1007/s00775-003-0471-6 PubMedCrossRefGoogle Scholar
  10. Hanaichi T, Kidokoro R, Hayashi H, Sakamoto N (1984) Electron probe X-ray analysis on human hepatocellular lysosomes with copper deposits: copper binding to a thiol-protein in lysosomes. Lab Invest 51:592–597PubMedGoogle Scholar
  11. Harris HH, Levina A, Dillon CT, Mulyani I, Lai B, Cai Z, Lay PA (2005) Time-dependent uptake, distribution and biotransformation of chromium(VI) in individual and bulk human lung cells: application of synchrotron radiation techniques. J Biol Inorg Chem 10:105–118. doi:10.1007/s00775-004-0617-1 PubMedCrossRefGoogle Scholar
  12. Huster D, Finegold MJ, Morgan CT, Burkhead JL, Nixon R, Vanderwerf SM, Gilliam CT, Lutsenko S (2006) Consequences of copper accumulation in the livers of the atp7b/ (Wilson disease gene) knockout mice. Am J Pathol 168:423–434. doi:10.2353/ajpath.2006.050312 PubMedCrossRefGoogle Scholar
  13. Kemner KM, Kelly SD, Lai B, Maser J, O’Loughlin EJ, Sholto-Douglas D, Cai Z, Schneegurt MA, Kulpa CF Jr, Nealson KH (2004) Elemental and redox analysis of single bacterial cells by X-ray microbeam analysis. Science 306:686–687. doi:10.1126/science.1103524 PubMedCrossRefGoogle Scholar
  14. Kirz J, Sayre D, Dilger J (1978) Short Wavelength Microscopy. NY Academy of Science, New YorkGoogle Scholar
  15. Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013–1016. doi:10.1126/science.272.5264.1013 PubMedCrossRefGoogle Scholar
  16. Lahner B, Gong J, Mahmoudian M, Smith EL, Abid KB, Rogers EE, Guerinot ML, Harper JF, Ward JM, McIntyre L, Schroeder JI, Salt DE (2003) Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat Biotechnol 21:1215–1221. doi:10.1038/nbt865 PubMedCrossRefGoogle Scholar
  17. Loudianos G, Gitlin JD (2000) Wilson’s disease. Semin Liver Dis 20:353–364. doi:10.1055/s-2000-9389 PubMedCrossRefGoogle Scholar
  18. McCrea RP, Harder SL, Martin M, Buist R, Nichol H (2008) A comparison of rapid-scanning X-ray fluorescence mapping and magnetic resonance imaging to localize brain iron distribution. Eur J Radiol 68:109–113CrossRefGoogle Scholar
  19. McRae R, Lai B, Vogt S, Fahrni CJ (2006) Correlative microXRF and optical immunofluorescence microscopy of adherent cells labeled with ultrasmall gold particles. J Struct Biol 155:22–29. doi:10.1016/j.jsb.2005.09.013 PubMedCrossRefGoogle Scholar
  20. Miller LM, Wang Q, Telivala TP, Smith RJ, Lanzirotti A, Miklossy J (2006) Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with beta-amyloid deposits in Alzheimer’s disease. J Struct Biol 155:30–37PubMedCrossRefGoogle Scholar
  21. Nakazato K, Nagamine T, Suzuki K, Kusakabe T, Moon HD, Oikawa M, Sakai T, Arakawa K (2008) Subcellular changes of essential metal shown by in-air micro-PIXE in oral cadmium-exposed mice. Biometals 21:83–91. doi:10.1007/s10534-007-9095-6 PubMedCrossRefGoogle Scholar
  22. Paunesku T, Rajh T, Wiederrecht G, Maser J, Vogt S, Stojicevic N, Protic M, Lai B, Oryhon J, Thurnauer M, Woloschak G (2003) Biology of TiO2-oligonucleotide nanocomposites. Nat Mater 2:343–346. doi:10.1038/nmat875 PubMedCrossRefGoogle Scholar
  23. Pickering IJ, Gumaelius L, Harris HH, Prince RC, Hirsch G, Banks JA, Salt DE, George GN (2006) Localizing the biochemical transformations of arsenate in a hyperaccumulating fern. Environ Sci Technol 40:5010–5014. doi:10.1021/es052559a PubMedCrossRefGoogle Scholar
  24. Pickering IJ, Prince RC, Salt DE, George GN (2000) Quantitative, chemically specific imaging of selenium transformation in plants. Proc Natl Acad Sci USA 97:10717–10722. doi:10.1073/pnas.200244597 PubMedCrossRefGoogle Scholar
  25. Roomans GM (1988) Introduction to X-ray microanalysis in biology. J Electron Microsc Tech 9:3–17. doi:10.1002/jemt.1060090103 PubMedCrossRefGoogle Scholar
  26. Roomans GM, Von Euler A (1996) X-ray microanalysis in cell biology and cell pathology. Cell Biol Int 20:103–109. doi:10.1006/cbir.1996.0014 PubMedCrossRefGoogle Scholar
  27. Sham TK, Kim PSG, Ngo H, Chakrabarti S, Adams PC (2005) X-ray Microspectroscopy of Hemochromatosis Liver and Diabetic Mice Kidney Tissues: Preliminary Observations. Phys Scr T 115:1047–1049. doi:10.1238/Physica.Topical.115a01047 CrossRefGoogle Scholar
  28. Sparks CJ (1980) Synchrotron Radiation Research. Plenum Press, New YorkGoogle Scholar
  29. Szokefalvi-Nagy Z (1994) Applications of PIXE in the life sciences. Biol Trace Elem Res 43–45:73–78. doi:10.1007/BF02917301 PubMedCrossRefGoogle Scholar
  30. Twining BS, Baines SB, Fisher NS, Maser J, Vogt S, Jacobsen C, Tovar-Sanchez A, Sanudo-Wilhelmy SA (2003) Quantifying trace elements in individual aquatic protist cells with a synchrotron X-ray fluorescence microprobe. Anal Chem 75:3806–3816. doi:10.1021/ac034227z PubMedCrossRefGoogle Scholar
  31. Van Espen P (2002) Spectrum Evaluation Handbook of X-ray Spectrometry. Marcel Dekker, New YorkGoogle Scholar
  32. Vogt S (2003) Maps: A set of software tools for analysis and visualization of 3D X-ray fluorescent datasets. J Phys IV 104:635–638. doi:10.1051/jp4:20030160 CrossRefGoogle Scholar
  33. Waern JB, Harris HH, Lai B, Cai Z, Harding MM, Dillon CT (2005) Intracellular mapping of the distribution of metals derived from the antitumor metallocenes. J Biol Inorg Chem 10:443–452. doi:10.1007/s00775-005-0649-1 PubMedCrossRefGoogle Scholar
  34. Waggoner DJ, Bartnikas TB, Gitlin JD (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6:221–230. doi:10.1006/nbdi.1999.0250 PubMedCrossRefGoogle Scholar
  35. Yang L, McRae R, Henary MM, Patel R, Lai B, Vogt S, Fahrni CJ (2005) Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron X-ray fluorescence microscopy. Proc Natl Acad Sci USA 102:11179–11184. doi:10.1073/pnas.0406547102 PubMedCrossRefGoogle Scholar
  36. Yun W, Lai B, Cai Z, Maser J, Legnini D, Gluskin E, Chen Z, Krasnoperova A, Valdimirsky Y, Cerrina F, Di Fabrizio E, Gentili M (1999) Nanometer Focusing of Hard X-Rays by Phase Zone Plates. Rev Sci Instrum 70:2238–2241. doi:10.1063/1.1149744 CrossRefGoogle Scholar
  37. Zierold K (2000) Heavy metal cytotoxicity studied by electron probe X-ray microanalysis of cultured rat hepatocytes. Toxicol In Vitro 14:557–563. doi:10.1016/S0887-2333(00)00049-7 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyOregon Health & Science UniversityPortlandUSA

Personalised recommendations