, Volume 22, Issue 1, pp 53–60 | Cite as

Iron acquisition by Pseudomonas aeruginosa in the lungs of patients with cystic fibrosis

  • Iain L. Lamont
  • Anna F. Konings
  • David W. Reid


The bacterium Pseudomonas aeruginosa is commonly isolated from the general environment and also infects the lungs of patients with cystic fibrosis (CF). Iron in mammals is not freely available to infecting pathogens although significant amounts of extracellular iron are available in the sputum that occurs in the lungs of CF patients. P. aeruginosa has a large number of systems to acquire this essential nutrient and many of these systems have been characterised in the laboratory. However, which iron acquisition systems are active in CF is not well understood. Here we review recent research that sheds light on how P. aeruginosa obtains iron in the lungs of CF patients.


Pseudomonas aeruginosa Chronic infection Cystic fibrosis Iron acquisition Siderophore Pyoverdine Pyochelin Infectious disease 



We acknowledge with appreciation the excellent work of many researchers in this field that for reasons of space could not be cited here. Our research is supported by grants from the Australian National Health and Medical Research Council and the Australian Cystic Fibrosis Trust. AK is a recipient of a New Zealand Bright Futures PhD scholarship.


  1. Aaron SD et al (2004) Adult cystic fibrosis exacerbations and new strains of Pseudomonas aeruginosa. Am J Respir Crit Care Med 169:811–815. doi: 10.1164/rccm.200309-1306OC PubMedCrossRefGoogle Scholar
  2. Ankenbauer RG, Quan HN (1994) FptA, the Fe(III)-pyochelin receptor of Pseudomonas aeruginosa: a phenolate siderophore receptor homologous to hydroxamate siderophore receptors. J Bacteriol 176:307–319PubMedGoogle Scholar
  3. Banin E, Vasil ML, Greenberg EP (2005) Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci USA 102:11076–11081. doi: 10.1073/pnas.0504266102 PubMedCrossRefGoogle Scholar
  4. Britigan BE, Hayek MB, Doebbeling BN, Fick RB Jr (1993) Transferrin and lactoferrin undergo proteolytic cleavage in the Pseudomonas aeruginosa-infected lungs of patients with cystic fibrosis. Infect Immun 61:5049–5055PubMedGoogle Scholar
  5. Budzikiewicz H (2004) Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-fluorescent Pseudomonas spp.). Fortschr Chem Org Naturst 87:81–237PubMedGoogle Scholar
  6. Bullen JJ, Rogers HJ, Griffiths E (1978) Role of iron in bacterial infection. Curr Top Microbiol Immunol 80:1–35PubMedGoogle Scholar
  7. Bullen JJ, Rogers HJ, Spalding PB, Ward CG (2005) Iron and infection: the heart of the matter. FEMS Immunol Med Microbiol 43:325–330. doi: 10.1016/j.femsim.2004.11.010 PubMedCrossRefGoogle Scholar
  8. Burns JL et al (2001) Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J Infect Dis 183:444–452. doi: 10.1086/318075 PubMedCrossRefGoogle Scholar
  9. Cao J, Woodhall MR, Alvarez J, Cartron ML, Andrews SC (2007) EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that is cryptic in Escherichia coli K-12 but functional in E. coli O157:H7. Mol Microbiol 65:857–875. doi: 10.1111/j.1365-2958.2007.05802.x PubMedCrossRefGoogle Scholar
  10. Cartron ML, Maddocks S, Gillingham P, Craven CJ, Andrews SC (2006) Feo-transport of ferrous iron into bacteria. Biometals 19:143–157. doi: 10.1007/s10534-006-0003-2 PubMedCrossRefGoogle Scholar
  11. Chiarini L, Bevivino A, Dalmastri C, Tabacchioni S, Visca P (2006) Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiol 14:277–286. doi: 10.1016/j.tim.2006.04.006 PubMedCrossRefGoogle Scholar
  12. Cornelis P, Matthijs S (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4:787–798. doi: 10.1046/j.1462-2920.2002.00369.x PubMedCrossRefGoogle Scholar
  13. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1328. doi: 10.1126/science.284.5418.1318 PubMedCrossRefGoogle Scholar
  14. Cox CD (1982) Effect of pyochelin on the virulence of Pseudomonas aeruginosa. Infect Immun 36:17–23PubMedGoogle Scholar
  15. Cox CD, Graham R (1979) Isolation of an iron-binding compound from Pseudomonas aeruginosa. J Bacteriol 137:357–364PubMedGoogle Scholar
  16. Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249. doi: 10.1128/MMBR.66.2.223-249.2002 PubMedCrossRefGoogle Scholar
  17. Darling P, Chan M, Cox AD, Sokol PA (1998) Siderophore production by cystic fibrosis isolates of Burkholderia cepacia. Infect Immun 66:874–877PubMedGoogle Scholar
  18. Davies JC, Alton EW, Bush A (2007) Cystic fibrosis. BMJ 335:1255–1259. doi: 10.1136/bmj.39391.713229.AD PubMedCrossRefGoogle Scholar
  19. Davis PB (2006) Cystic fibrosis since 1938. Am J Respir Crit Care Med 173:475–482. doi: 10.1164/rccm.200505-840OE PubMedCrossRefGoogle Scholar
  20. de Chial M et al (2003) Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa. Microbiology 149:821–831. doi: 10.1099/mic.0.26136-0 PubMedCrossRefGoogle Scholar
  21. De Vos D et al (2001) Study of pyoverdine type and production by Pseudomonas aeruginosa isolated from cystic fibrosis patients: prevalence of type II pyoverdine isolates and accumulation of pyoverdine-negative mutations. Arch Microbiol 175:384–388. doi: 10.1007/s002030100278 PubMedCrossRefGoogle Scholar
  22. Doring G, Pfestorf M, Botzenhart K, Abdallah MA (1988) Impact of proteases on iron uptake of Pseudomonas aeruginosa pyoverdin from transferrin and lactoferrin. Infect Immun 56:291–293PubMedGoogle Scholar
  23. Eberl L, Tummler B (2004) Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: genome evolution, interactions and adaptation. Int J Med Microbiol 294:123–131. doi: 10.1016/j.ijmm.2004.06.022 PubMedCrossRefGoogle Scholar
  24. Emerson J, Rosenfeld M, McNamara S, Ramsey B, Gibson RL (2002) Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol 34:91–100. doi: 10.1002/ppul.10127 PubMedCrossRefGoogle Scholar
  25. Forsberg CM, Bullen JJ (1972) The effect of passage and iron on the virulence of Pseudomonas aeruginosa. J Clin Pathol 25:65–68. doi: 10.1136/jcp.25.1.65 PubMedCrossRefGoogle Scholar
  26. Ghysels B et al (2004) FpvB, an alternative type I ferripyoverdine receptor of Pseudomonas aeruginosa. Microbiology 150:1671–1680. doi: 10.1099/mic.0.27035-0 PubMedCrossRefGoogle Scholar
  27. Govan JR, Brown AR, Jones AM (2007) Evolving epidemiology of Pseudomonas aeruginosa and the Burkholderia cepacia complex in cystic fibrosis lung infection. Future Microbiol 2:153–164. doi: 10.2217/17460913.2.2.153 PubMedCrossRefGoogle Scholar
  28. Grosse C, Scherer J, Koch D, Otto M, Taudte N, Grass G (2006) A new ferrous iron-uptake transporter, EfeU (YcdN), from Escherichia coli. Mol Microbiol 62:120–131. doi: 10.1111/j.1365-2958.2006.05326.x PubMedCrossRefGoogle Scholar
  29. Haas B, Kraut J, Marks J, Zanker SC, Castignetti D (1991a) Siderophore presence in sputa of cystic fibrosis patients. Infect Immun 59:3997–4000PubMedGoogle Scholar
  30. Haas B, Murphy E, Castignetti D (1991b) Siderophore synthesis by mucoid Pseudomonas aeruginosa strains isolated from cystic fibrosis patients. J Microbiol 37:654, 657Google Scholar
  31. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108. doi: 10.1038/nrmicro821 PubMedCrossRefGoogle Scholar
  32. Harris JK et al (2007) Molecular identification of bacteria in bronchoalveolar lavage fluid from children with cystic fibrosis. Proc Natl Acad Sci USA 104:20529–20533. doi: 10.1073/pnas.0709804104 PubMedCrossRefGoogle Scholar
  33. Harrison F (2007) Microbial ecology of the cystic fibrosis lung. Microbiology 153:917–923. doi: 10.1099/mic.0.2006/004077-0 PubMedCrossRefGoogle Scholar
  34. Konstan MW et al. (2007) Risk factors for rate of decline in forced expiratory volume in one-second in children and adolescents with cystic fibrosis. J Pediatr 151:134–139, 139.e1Google Scholar
  35. Lam J, Chan R, Lam K, Costerton JW (1980) Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun 28:546–556PubMedGoogle Scholar
  36. Mahenthiralingam E, Urban TA, Goldberg JB (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3:144–156. doi: 10.1038/nrmicro1085 PubMedCrossRefGoogle Scholar
  37. Mashburn LM, Jett AM, Akins DR, Whiteley M (2005) Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J Bacteriol 187:554–566. doi: 10.1128/JB.187.2.554-566.2005 PubMedCrossRefGoogle Scholar
  38. Mateos F, Brock JH, Perez-Arellano JL (1998) Iron metabolism in the lower respiratory tract. Thorax 53:594–600PubMedCrossRefGoogle Scholar
  39. Matzanke BF (2005) Iron transport: siderophores. In: King RB (ed) Encyclopedia of Inorganic Chemistry, 2nd edn. Wiley, New YorkGoogle Scholar
  40. McCallum SJ, Corkill J, Gallagher M, Ledson MJ, Hart CA, Walshaw MJ (2001) Superinfection with a transmissible strain of Pseudomonas aeruginosa in adults with cystic fibrosis chronically colonised by P. aeruginosa. Lancet 358:558–560. doi: 10.1016/S0140-6736(01)05715-4 PubMedCrossRefGoogle Scholar
  41. Meyer J-M, Abdallah MA (1978) The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. J Gen Microbiol 107:319–328Google Scholar
  42. Meyer JM, Neely A, Stintzi A, Georges C, Holder IA (1996) Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect Immun 64:518–523PubMedGoogle Scholar
  43. Meyer J-M et al (1997) Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. Microbiology 143:35–43PubMedGoogle Scholar
  44. Moreau-Marquis S et al (2008) The DeltaF508-CFTR mutation results in increased biofilms formation by Pseudomonas aeruginosa by increasing iron bioavailability. Am J Physiol Lung Cell Mol Physiol 295:L25–L37. doi: 10.1152/ajplung.00391.2007 PubMedCrossRefGoogle Scholar
  45. Musk DJJ, Hergenrother PJ (2008) Chelated iron sources are inhibitors of Pseudomonas aeruginosa biofilms and distribute efficiently in an in vitro model of drug delivery to the human lung. J Appl Microbiol 105:380–388Google Scholar
  46. Musk DJ, Banko DA, Hergenrother PJ (2005) Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem Biol 12:789–796. doi: 10.1016/j.chembiol.2005.05.007 PubMedCrossRefGoogle Scholar
  47. Nixon GM et al (2001) Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. J Pediatr 138:699–704. doi: 10.1067/mpd.2001.112897 PubMedCrossRefGoogle Scholar
  48. Ochsner A, Johnson Z, Vasil ML (2000) Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. Microbiology 146:185–198PubMedGoogle Scholar
  49. Oliver A, Canton R, Campo P, Baquero F, Blazquez J (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1254. doi: 10.1126/science.288.5469.1251 PubMedCrossRefGoogle Scholar
  50. Palleroni NJ (1981) Introduction to the family Pseudomonadaceae. In: Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG (eds) The prokaryotes. A handbook on habitats. Isolation and identification of bacteria. Springer-Verlag, Berlin, pp 655–665Google Scholar
  51. Palmer KL, Mashburn LM, Singh PK, Whiteley M (2005) Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J Bacteriol 187:5267–5277. doi: 10.1128/JB.187.15.5267-5277.2005 PubMedCrossRefGoogle Scholar
  52. Patriquin GM, Banin E, Gilmour C, Tuchman R, Greenberg EP, Poole K (2008) Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 190:662–671. doi: 10.1128/JB.01473-07 PubMedCrossRefGoogle Scholar
  53. Poole K, McKay GA (2003) Iron acquisition and its control in Pseudomonas aeruginosa: many roads lead to Rome. Front Biosci 8:d661–d686. doi: 10.2741/1051 PubMedCrossRefGoogle Scholar
  54. Poole K, Neshat S, Krebes K, Heinrichs D (1993) Cloning and nucleotide analysis of the ferripyoverdine receptor gene fpvA of Pseudomonas aeruginosa. J Bacteriol 175:4597–4604PubMedGoogle Scholar
  55. Ratjen F, Doring G (2003) Cystic fibrosis. Lancet 361:681–689. doi: 10.1016/S0140-6736(03)12567-6 PubMedCrossRefGoogle Scholar
  56. Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941. doi: 10.1146/annurev.micro.54.1.881 PubMedCrossRefGoogle Scholar
  57. Reid DW, Lam QT, Schneider H, Walters EH (2004) Airway iron and iron-regulatory cytokines in cystic fibrosis. Eur Respir J 24:286–291. doi: 10.1183/09031936.04.00104803 PubMedCrossRefGoogle Scholar
  58. Reid DW, O’May C, Champion A, Kirov SM (2007) Increased airway iron as a potential factor in the persistence of Pseudomonas aeruginosa infection in cystic fibrosis. Eur Respir J 30:286–292. doi: 10.1183/09031936.00154006 PubMedCrossRefGoogle Scholar
  59. Schalk IJ (2007) Metal trafficking via siderophores in Gram-negative bacteria: specificities and characteristics of the pyoverdine pathway. J Inorg Biochem 102:1159–1169Google Scholar
  60. Schlegel K, Taraz K, Budzikiewicz H (2004) The stereoisomers of pyochelin, a siderophore of Pseudomonas aeruginosa. Biometals 17:409–414. doi: 10.1023/B:BIOM.0000029437.42633.73 PubMedCrossRefGoogle Scholar
  61. Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764. doi: 10.1038/35037627 PubMedCrossRefGoogle Scholar
  62. Singh PK, Parsek MR, Greenberg EP, Welsh MJ (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417:552–555. doi: 10.1038/417552a PubMedCrossRefGoogle Scholar
  63. Smith DL, Smith EG, Pitt TL, Stableforth DE (1998) Regional microbiology of the cystic fibrosis lung: a post-mortem study in adults. J Infect 37:41–43. doi: 10.1016/S0163-4453(98)90475-3 PubMedCrossRefGoogle Scholar
  64. Smith EE et al. (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA 103:8487–8492Google Scholar
  65. Sokol PA (1986) Production and utilization of pyochelin by clinical isolates of Pseudomonas cepacia. J Clin Microbiol 23:560–562PubMedGoogle Scholar
  66. Son MS, Matthews WJ Jr, Kang Y, Nguyen DT, Hoang TT (2007) In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients. Infect Immun 75:5313–5324. doi: 10.1128/IAI.01807-06 PubMedCrossRefGoogle Scholar
  67. Sriyosachati S, Cox CD (1986) Siderophore-mediated iron acquisition from transferrin by Pseudomonas aeruginosa. Infect Immun 52:885–891PubMedGoogle Scholar
  68. Stites SW, Walters B, O’Brien-Ladner AR, Bailey K, Wesselius LJ (1998) Increased iron and ferritin content of sputum from patients with cystic fibrosis or chronic bronchitis. Chest 114:814–819. doi: 10.1378/chest.114.3.814 PubMedCrossRefGoogle Scholar
  69. Stites SW, Plautz MW, Bailey K, O’Brien-Ladner AR, Wesselius LJ (1999) Increased concentrations of iron and isoferritins in the lower respiratory tract of patients with stable cystic fibrosis. Am J Respir Crit Care Med 160:796–801PubMedGoogle Scholar
  70. Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209. doi: 10.1146/annurev.micro.56.012302.160705 PubMedCrossRefGoogle Scholar
  71. Takase H, Nitanai H, Hoshino K, Otani T (2000) Impact of siderophore production on Pseudomonas aeruginosa infections in immunocompromised mice. Infect Immun 68:1834–1839. doi: 10.1128/IAI.68.4.1834-1839.2000 PubMedCrossRefGoogle Scholar
  72. Tappe R, Taraz K, Budzikiewicz H, Meyer J-M, Lefevre LF (1993) Structure elucidation of a pyoverdine produced by Pseudomonas aeruginosa ATCC 27853. J Prakt Chem 335:83–87. doi: 10.1002/prac.19933350113 CrossRefGoogle Scholar
  73. Tate S, MacGregor G, Davis M, Innes JA, Greening AP (2002) Airways in cystic fibrosis are acidified: detection by exhaled breath condensate. Thorax 57:926–929. doi: 10.1136/thorax.57.11.926 PubMedCrossRefGoogle Scholar
  74. Teintze M, Hossain MB, Barnes CL, Leong J, van der Helm D (1981) Structure of ferric pseudobactin, a siderophore from a plant growth promoting Pseudomonas. Biochemistry 20:6446–6457. doi: 10.1021/bi00525a025 PubMedCrossRefGoogle Scholar
  75. Tseng CF et al (2006) Bacterial siderophores: the solution stoichiometry and coordination of the Fe(III) complexes of pyochelin and related compounds. J Biol Inorg Chem 11:419–432. doi: 10.1007/s00775-006-0088-7 PubMedCrossRefGoogle Scholar
  76. VanDevanter DR, Van Dalfsen JM (2005) How much do Pseudomonas biofilms contribute to symptoms of pulmonary exacerbation in cystic fibrosis? Pediatr Pulmonol 39:504–506. doi: 10.1002/ppul.20220 PubMedCrossRefGoogle Scholar
  77. Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15:22–30. doi: 10.1016/j.tim.2006.11.004 PubMedCrossRefGoogle Scholar
  78. Wasielewski E et al (2008) Multiple conformations of the metal-bound pyoverdine PvdI, a siderophore of Pseudomonas aeruginosa: a nuclear magnetic resonance study. Biochemistry 47:3397–3406. doi: 10.1021/bi702214s PubMedCrossRefGoogle Scholar
  79. Weaver VB, Kolter R (2004) Burkholderia sp. alter Pseudomonas aeruginosa physiology through iron sequestration. J Bacteriol 186:2376–2384. doi: 10.1128/JB.186.8.2376-2384.2004 PubMedCrossRefGoogle Scholar
  80. Weinberg ED (1984) Iron withholding: a defense against infection and neoplasia. Physiol Rev 64:65–102PubMedGoogle Scholar
  81. Wiehlmann L et al (2007) Population structure of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 104:8101–8106. doi: 10.1073/pnas.0609213104 PubMedCrossRefGoogle Scholar
  82. Wolz C et al (1994) Iron release from transferrin by pyoverdin and elastase from Pseudomonas aeruginosa. Infect Immun 62:4021–4027PubMedGoogle Scholar
  83. Worlitzsch D et al (2002) Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109:317–325PubMedGoogle Scholar
  84. Xiao R, Kisaalita WS (1997) Iron acquisition from transferrin and lactoferrin by Pseudomonas aeruginosa pyoverdin. Microbiology 143:2509–2515PubMedCrossRefGoogle Scholar
  85. Yang L, Barken KB, Skindersoe ME, Christensen AB, Givskov M, Tolker-Nielsen T (2007) Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153:1318–1328. doi: 10.1099/mic.0.2006/004911-0 PubMedCrossRefGoogle Scholar
  86. Yang L et al (2008) In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections. J Bacteriol 190:2767–2776. doi: 10.1128/JB.01581-07 PubMedCrossRefGoogle Scholar
  87. Yoon SS et al (2002) Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell 3:593–603. doi: 10.1016/S1534-5807(02)00295-2 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Iain L. Lamont
    • 1
  • Anna F. Konings
    • 1
  • David W. Reid
    • 2
  1. 1.Department of BiochemistryUniversity of OtagoDunedinNew Zealand
  2. 2.Menzies Research InstituteUniversity of TasmaniaHobartAustralia

Personalised recommendations